List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9555711/publications.pdf Version: 2024-02-01



LISE KDANNED

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | What is stress? Concepts, definitions and applications in seed science. New Phytologist, 2010, 188, 655-673.                                                                                                                                                    | 7.3 | 358       |
| 2  | A Central Role for Thiols in Plant Tolerance to Abiotic Stress. International Journal of Molecular<br>Sciences, 2013, 14, 7405-7432.                                                                                                                            | 4.1 | 357       |
| 3  | Desiccation-Tolerance in Lichens: A Review. Bryologist, 2008, 111, 576-593.                                                                                                                                                                                     | 0.6 | 284       |
| 4  | Glutathione half-cell reduction potential: A universal stress marker and modulator of programmed cell death?. Free Radical Biology and Medicine, 2006, 40, 2155-2165.                                                                                           | 2.9 | 281       |
| 5  | Metals and seeds: Biochemical and molecular implications and their significance for seed germination.<br>Environmental and Experimental Botany, 2011, 72, 93-105.                                                                                               | 4.2 | 262       |
| 6  | The Mechanisms Involved in Seed Dormancy Alleviation by Hydrogen Cyanide Unravel the Role of<br>Reactive Oxygen Species as Key Factors of Cellular Signaling during Germination Â. Plant Physiology,<br>2009, 150, 494-505.                                     | 4.8 | 256       |
| 7  | A Modulating Role for Antioxidants in Desiccation Tolerance. Integrative and Comparative Biology, 2005, 45, 734-740.                                                                                                                                            | 2.0 | 230       |
| 8  | Revival of a resurrection plant correlates with its antioxidant status. Plant Journal, 2002, 31, 13-24.                                                                                                                                                         | 5.7 | 228       |
| 9  | Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners.<br>Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3141-3146.                                                        | 7.1 | 218       |
| 10 | Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain<br>dormancy in barley. Plant, Cell and Environment, 2011, 34, 980-993.                                                                                               | 5.7 | 163       |
| 11 | Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. Journal of Plant Physiology, 2010, 167, 805-811.                                                                                        | 3.5 | 130       |
| 12 | Social Waves in Giant Honeybees Repel Hornets. PLoS ONE, 2008, 3, e3141.                                                                                                                                                                                        | 2.5 | 98        |
| 13 | Physical dormancy in seeds: a game of hide and seek?. New Phytologist, 2013, 198, 496-503.                                                                                                                                                                      | 7.3 | 98        |
| 14 | Biochemical traits of lichens differing in relative desiccation tolerance. New Phytologist, 2003, 160, 167-176.                                                                                                                                                 | 7.3 | 97        |
| 15 | Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. Photosynthesis<br>Research, 2012, 113, 89-103.                                                                                                                                  | 2.9 | 97        |
| 16 | Genomeâ€wide association mapping and biochemical markers reveal that seed ageing and longevity are<br>intricately affected by genetic background and developmental and environmental conditions in barley.<br>Plant, Cell and Environment, 2015, 38, 1011-1022. | 5.7 | 95        |
| 17 | Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant<br>Growth Regulation, 2010, 62, 241-255.                                                                                                                        | 3.4 | 88        |
| 18 | Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrantCastanea sativaseeds. Plant, Cell and Environment, 2009, 33, 59-75.                                                                                    | 5.7 | 87        |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle<br>pigments in the desiccation-tolerant moss Syntrichia ruralis. Journal of Experimental Botany, 2013, 64,<br>3033-3043.                                      | 4.8 | 86        |
| 20 | Glutathione status correlates with different degrees of desiccation tolerance in three lichens. New Phytologist, 2002, 154, 451-460.                                                                                                                                 | 7.3 | 83        |
| 21 | Determination of Glutathione and Glutathione Disulphide in Lichens: a Comparison of Frequently<br>Used Methods. , 1996, 7, 24-28.                                                                                                                                    |     | 78        |
| 22 | Roles of apoplastic peroxidases in plant response to wounding. Phytochemistry, 2015, 112, 122-129.                                                                                                                                                                   | 2.9 | 75        |
| 23 | Transcriptome-Wide Mapping of Pea Seed Ageing Reveals a Pivotal Role for Genes Related to Oxidative<br>Stress and Programmed Cell Death. PLoS ONE, 2013, 8, e78471.                                                                                                  | 2.5 | 74        |
| 24 | Content of low-molecular-weight thiols during the imbibition of Pea seeds. Physiologia Plantarum, 1993, 88, 557-562.                                                                                                                                                 | 5.2 | 73        |
| 25 | An oxidative burst of superoxide in embryonic axes of recalcitrant sweet chestnut seeds as induced by excision and desiccation. Physiologia Plantarum, 2008, 133, 131-139.                                                                                           | 5.2 | 73        |
| 26 | Significance of Thiolâ€Ðisulfide Exchange in Resting Stages of Plant Development. Botanica Acta, 1996,<br>109, 8-14.                                                                                                                                                 | 1.6 | 72        |
| 27 | Inter-nucleosomal DNA fragmentation and loss of RNA integrity during seed ageing. Plant Growth Regulation, 2011, 63, 63-72.                                                                                                                                          | 3.4 | 72        |
| 28 | Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but<br>less carotenoids than their wild counterparts. BMC Plant Biology, 2014, 14, 1599.                                                                          | 3.6 | 68        |
| 29 | Analyses of Reactive Oxygen Species and Antioxidants in Relation to Seed Longevity and Germination.<br>Methods in Molecular Biology, 2011, 773, 343-367.                                                                                                             | 0.9 | 66        |
| 30 | Noninvasive diagnosis of seed viability using infrared thermography. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3912-3917.                                                                                          | 7.1 | 65        |
| 31 | Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation,<br>lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress.<br>Journal of Experimental Botany, 2012, 63, 6519-6530. | 4.8 | 63        |
| 32 | Glutathione redox state, tocochromanols, fatty acids, antioxidant enzymes and protein carbonylation<br>in sunflower seed embryos associated with after-ripening and ageing. Annals of Botany, 2015, 116,<br>669-678.                                                 | 2.9 | 58        |
| 33 | Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic<br>and Antarctic <i>Zygnema</i> (Zygnematophyceae, Streptophyta) strains. FEMS Microbiology Ecology,<br>2016, 92, fiw096.                                       | 2.7 | 57        |
| 34 | Isolation of high-quality RNA from polyphenol-, polysaccharide- and lipid-rich seeds. Phytochemical<br>Analysis, 2006, 17, 144-148.                                                                                                                                  | 2.4 | 54        |
| 35 | Application of heat stress <i>in situ</i> demonstrates a protective role of irradiation on photosynthetic performance in alpine plants. Plant, Cell and Environment, 2015, 38, 812-826.                                                                              | 5.7 | 51        |
| 36 | Production of reactive oxygen species in excised, desiccated and cryopreserved explants of Trichilia dregeana Sond. South African Journal of Botany, 2010, 76, 112-118.                                                                                              | 2.5 | 43        |

ILSE KRANNER

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Stress physiology and the symbiosis. , 2008, , 134-151.                                                                                                                                                                                    |     | 42        |
| 38 | Simultaneous Determination of Ascorbic Acid and Dehydroascorbic Acid in Plant Materials by High Performance Liquid Chromatography. , 1996, 7, 69-72.                                                                                       |     | 41        |
| 39 | Drought affects the heat-hardening capacity of alpine plants as indicated by changes in xanthophyll cycle pigments, singlet oxygen scavenging, α-tocopherol and plant hormones. Environmental and Experimental Botany, 2017, 133, 159-175. | 4.2 | 41        |
| 40 | Changes in tocochromanols and glutathione reveal differences in the mechanisms of seed ageing<br>under seedbank conditions and controlled deterioration in barley. Environmental and Experimental<br>Botany, 2018, 156, 8-15.              | 4.2 | 39        |
| 41 | Glutathione half-cell reduction potential and α-tocopherol as viability markers during the prolonged storage of <i>Suaeda maritima</i> seeds. Seed Science Research, 2010, 20, 47-53.                                                      | 1.7 | 38        |
| 42 | Mathematically combined half-cell reduction potentials of low-molecular-weight thiols as markers of seed ageing. Free Radical Research, 2011, 45, 1093-1102.                                                                               | 3.3 | 37        |
| 43 | Foliar Phenolic Compounds in Norway Spruce with Varying Susceptibility to Chrysomyxa<br>rhododendri: Analyses of Seasonal and Infection-Induced Accumulation Patterns. Frontiers in Plant<br>Science, 2017, 8, 1173.                       | 3.6 | 36        |
| 44 | Distress and eustress of reactive electrophiles and relevance to light stress acclimation via<br>stimulation of thiol/disulphide-based redox defences. Free Radical Biology and Medicine, 2018, 122,<br>65-73.                             | 2.9 | 36        |
| 45 | A proposed interplay between peroxidase, amine oxidase and lipoxygenase in the wounding-induced oxidative burst in Pisum sativum seedlings. Phytochemistry, 2015, 112, 130-138.                                                            | 2.9 | 34        |
| 46 | Salt stress, signalling and redox control in seeds. Functional Plant Biology, 2013, 40, 848.                                                                                                                                               | 2.1 | 33        |
| 47 | Novel loci and a role for nitric oxide for seed dormancy and preharvest sprouting in barley. Plant,<br>Cell and Environment, 2019, 42, 1318-1327.                                                                                          | 5.7 | 32        |
| 48 | Wet-dry cycling extends seed persistence by re-instating antioxidant capacity. Plant and Soil, 2011, 338, 511-519.                                                                                                                         | 3.7 | 31        |
| 49 | Metatranscriptomic and metabolite profiling reveals vertical heterogeneity within a <i>Zygnema</i> green algal mat from Svalbard (High Arctic). Environmental Microbiology, 2019, 21, 4283-4299.                                           | 3.8 | 31        |
| 50 | Association genetics of phenolic needle compounds in Norway spruce with variable susceptibility to needle bladder rust. Plant Molecular Biology, 2017, 94, 229-251.                                                                        | 3.9 | 30        |
| 51 | Seed Carotenoid and Tocochromanol Composition of Wild Fabaceae Species Is Shaped by Phylogeny and Ecological Factors. Frontiers in Plant Science, 2017, 8, 1428.                                                                           | 3.6 | 27        |
| 52 | Increased stress parameter synthesis in the yeast Saccharomyces cerevisiae after treatment with<br>4-hydroxy-2-nonenal 1. FEBS Letters, 1997, 405, 11-15.                                                                                  | 2.8 | 26        |
| 53 | Redox poise and metabolite changes in bread wheat seeds are advanced by priming with hot steam.<br>Biochemical Journal, 2018, 475, 3725-3743.                                                                                              | 3.7 | 25        |
| 54 | Pre-akinete formation in Zygnema sp. from polar habitats is associated with metabolite re-arrangement. Journal of Experimental Botany, 2020, 71, 3314-3322.                                                                                | 4.8 | 25        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Redox state of low-molecular-weight thiols and disulphides during somatic embryogenesis of salt-treated suspension cultures ofDactylis glomerataL Free Radical Research, 2012, 46, 656-664.                           | 3.3 | 24        |
| 56 | Analyses of several seed viability markers in individual recalcitrant seeds of <i>Eugenia stipitata</i> McVaugh with totipotent germination. Plant Biology, 2017, 19, 6-13.                                           | 3.8 | 24        |
| 57 | How dry is dry? Molecular mobility in relation to thallus water content in a lichen. Journal of Experimental Botany, 2021, 72, 1576-1588.                                                                             | 4.8 | 24        |
| 58 | Wheat seed ageing viewed through the cellular redox environment and changes in pH. Free Radical Research, 2019, 53, 641-654.                                                                                          | 3.3 | 23        |
| 59 | Quantification of seed oil from species with varying oil content using supercritical fluid extraction.<br>Phytochemical Analysis, 2008, 19, 493-498.                                                                  | 2.4 | 22        |
| 60 | Alleviation of dormancy by reactive oxygen species in Bidens pilosa L. seeds. South African Journal of<br>Botany, 2010, 76, 601-605.                                                                                  | 2.5 | 22        |
| 61 | Changes in low-molecular-weight thiol-disulphide redox couples are part of bread wheat seed germination and early seedling growth. Free Radical Research, 2017, 51, 568-581.                                          | 3.3 | 22        |
| 62 | Extreme thermo-tolerance in seeds of desert succulents is related to maximum annual temperature.<br>South African Journal of Botany, 2007, 73, 262-265.                                                               | 2.5 | 21        |
| 63 | Plant Parasites under Pressure: Effects of Abiotic Stress on the Interactions between Parasitic Plants<br>and Their Hosts. International Journal of Molecular Sciences, 2021, 22, 7418.                               | 4.1 | 21        |
| 64 | Redox feedback regulation of ANAC089 signaling alters seed germination and stress response. Cell Reports, 2021, 35, 109263.                                                                                           | 6.4 | 20        |
| 65 | Abundance and Extracellular Release of Phytohormones in Aeroâ€ŧerrestrial Microalgae<br>(Trebouxiophyceae, Chlorophyta) As a Potential Chemical Signaling Source 1. Journal of Phycology,<br>2020, 56, 1295-1307.     | 2.3 | 19        |
| 66 | Analysis of Chlorophylls, Carotenoids, and Tocopherols in Lichens. , 2002, , 363-378.                                                                                                                                 |     | 18        |
| 67 | Homoglutathione synthetase and glutathione synthetase in drought-stressed cowpea leaves:<br>Expression patterns and accumulation of low-molecular-weight thiols. Journal of Plant Physiology,<br>2010, 167, 480-487.  | 3.5 | 18        |
| 68 | Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching. Annals of Botany, 2015, 116, 519-527. | 2.9 | 18        |
| 69 | Abscisic acid-determined seed vigour differences do not influence redox regulation during ageing.<br>Biochemical Journal, 2019, 476, 965-974.                                                                         | 3.7 | 18        |
| 70 | Does oxygen affect ageing mechanisms of <i>Pinus densiflora</i> seeds? A matter of cytoplasmic physical state. Journal of Experimental Botany, 2022, 73, 2631-2649.                                                   | 4.8 | 18        |
| 71 | Glutathione half-cell reduction potential as a seed viability marker of the potential oilseed crop<br>Vernonia galamensis. Industrial Crops and Products, 2010, 32, 687-691.                                          | 5.2 | 16        |
|    |                                                                                                                                                                                                                       |     |           |

How to Join a Wave: Decision-Making Processes in Shimmering Behavior of Giant Honeybees (Apis) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Apoplastic lipid barriers regulated by conserved homeobox transcription factors extend seed longevity in multiple plant species. New Phytologist, 2021, 231, 679-694.                                                                                                                 | 7.3 | 16        |
| 74 | Hydrogen Peroxide Metabolism in Interkingdom Interaction Between Bacteria and Wheat Seeds and<br>Seedlings. Molecular Plant-Microbe Interactions, 2020, 33, 336-348.                                                                                                                  | 2.6 | 15        |
| 75 | Stereoscopic motion analysis in densely packed clusters: 3D analysis of the shimmering behaviour in<br>Giant honey bees. Frontiers in Zoology, 2011, 8, 3.                                                                                                                            | 2.0 | 14        |
| 76 | The freshwater red alga <i>Batrachospermum turfosum</i> (Florideophyceae) can acclimate to a wide range of light and temperature conditions. European Journal of Phycology, 2017, 52, 238-249.                                                                                        | 2.0 | 14        |
| 77 | Formation of chloroplast protrusions and catalase activity in alpine Ranunculus glacialis under elevated temperature and different CO2/O2 ratios. Protoplasma, 2015, 252, 1613-1619.                                                                                                  | 2.1 | 13        |
| 78 | Adaptation to Aquatic and Terrestrial Environments in Chlorella vulgaris (Chlorophyta). Frontiers in<br>Microbiology, 2020, 11, 585836.                                                                                                                                               | 3.5 | 13        |
| 79 | RNA-Seq and secondary metabolite analyses reveal a putative defence-transcriptome in Norway spruce<br>(Picea abies) against needle bladder rust (Chrysomyxa rhododendri) infection. BMC Genomics, 2020, 21,<br>336.                                                                   | 2.8 | 13        |
| 80 | Extracellular superoxide production associated with secondary root growth following desiccation of Pisum sativum seedlings. Journal of Plant Physiology, 2011, 168, 1870-1873.                                                                                                        | 3.5 | 12        |
| 81 | Speeding Up Social Waves. Propagation Mechanisms of Shimmering in Giant Honeybees. PLoS ONE, 2014,<br>9, e86315.                                                                                                                                                                      | 2.5 | 12        |
| 82 | Post desiccation germination of mature seeds of tea (Camellia sinensis L.) can be enhanced by<br>pro-oxidant treatment, but partial desiccation tolerance does not ensure survival at â^'20°C. Plant<br>Science, 2012, 184, 36-44.                                                    | 3.6 | 11        |
| 83 | Acquisition of desiccation tolerance in Haematococcus pluvialis requires photosynthesis and coincides with lipid and astaxanthin accumulation. Algal Research, 2022, 64, 102699.                                                                                                      | 4.6 | 11        |
| 84 | The distribution of glutathione and homoglutathione in leaf, root and seed tissue of 73 species across the three sub-families of the Leguminosae. Phytochemistry, 2015, 115, 175-183.                                                                                                 | 2.9 | 10        |
| 85 | Exceptional flooding tolerance in the totipotent recalcitrant seeds of <i>Eugenia stipitata</i> . Seed Science Research, 2017, 27, 121-130.                                                                                                                                           | 1.7 | 9         |
| 86 | AtFAHD1a: A New Player Influencing Seed Longevity and Dormancy in Arabidopsis?. International<br>Journal of Molecular Sciences, 2021, 22, 2997.                                                                                                                                       | 4.1 | 9         |
| 87 | Comparative analysis of wildâ€ŧype accessions reveals novel determinants of Arabidopsis seed longevity.<br>Plant, Cell and Environment, 2022, 45, 2708-2728.                                                                                                                          | 5.7 | 9         |
| 88 | Solar irradiation levels during simulated long―and shortâ€ŧerm heat waves significantly influence heat<br>survival, pigment and ascorbate composition, and free radical scavenging activity in alpine<br><i>Vaccinium gaultherioides</i> . Physiologia Plantarum, 2018, 163, 211-230. | 5.2 | 7         |
| 89 | Phytohormone release by three isolated lichen mycobionts and the effects of indole-3-acetic acid on their compatible photobionts. Symbiosis, 2020, 82, 95-108.                                                                                                                        | 2.3 | 7         |
| 90 | Enhanced culturing techniques for the mycobiont isolated from the lichen Xanthoria parietina.<br>Mycological Progress, 2021, 20, 797-808.                                                                                                                                             | 1.4 | 7         |

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Trade-Off between Foraging Activity and Infestation by Nest Parasites in the Primitively Eusocial<br>BeeHalictus scabiosae. Psyche: Journal of Entomology, 2010, 2010, 1-13.   | 0.9 | 6         |
| 92 | The crypsis hypothesis explained: a reply to Jayasuriya et al. (2015). Seed Science Research, 2015, 25, 402-408.                                                               | 1.7 | 6         |
| 93 | Content of low-molecular-weight thiols during the imbibition of pea seeds. Physiologia Plantarum, 1993, 88, 557-562.                                                           | 5.2 | 4         |
| 94 | The lichen market place. New Phytologist, 2022, 234, 1541-1543.                                                                                                                | 7.3 | 4         |
| 95 | Metabolite Profiling in Green Microalgae with Varying Degrees of Desiccation Tolerance.<br>Microorganisms, 2022, 10, 946.                                                      | 3.6 | 3         |
| 96 | Advances in understanding Norway spruce natural resistance to needle bladder rust infection:<br>transcriptional and secondary metabolites profiling. BMC Genomics, 2022, 23, . | 2.8 | 2         |
| 97 | Non-invasive diagnosis of viability in seeds and lichens by infrared thermography under controlled environmental conditions. Plant Methods, 2019, 15, 147.                     | 4.3 | Ο         |