Geoffrey D Robson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9555279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved saccharification of Chlorella vulgaris biomass by fungal secreted enzymes for bioethanol production. Algal Research, 2021, 58, 102402.	4.6	9
2	lsolation of fungal strains for biodegradation and saccharification of microalgal biomass. Biomass and Bioenergy, 2020, 137, 105547.	5.7	6
3	Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Management, 2019, 97, 105-114.	7.4	130
4	21st century miniguide to fungal biotechnology. Mexican Journal of Biotechnology, 2019, 5, 11-42.	0.3	4
5	Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polymer Degradation and Stability, 2017, 137, 122-130.	5.8	388
6	The Compostable Plastic Poly(lactic) Acid Causes a Temporal Shift in Fungal Communities in Maturing Compost. Compost Science and Utilization, 2017, 25, 211-219.	1.2	8
7	Application of green fluorescent protein to measure antimicrobial efficacy and the kinetics of cell death against Escherichia coli. Journal of Microbiological Methods, 2017, 141, 67-72.	1.6	1
8	Biochar use in a legume–rice rotation system: effects on soil fertility and crop performance. Archives of Agronomy and Soil Science, 2016, 62, 199-215.	2.6	28
9	Occurrence of azole-resistant species of Aspergillus in the UK environment. Journal of Global Antimicrobial Resistance, 2014, 2, 276-279.	2.2	51
10	Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. Journal of Basic Microbiology, 2014, 54, 18-27.	3.3	122
11	Fungal succession in an in-vessel composting system characterized using 454 pyrosequencing. FEMS Microbiology Ecology, 2014, 88, 296-308.	2.7	92
12	Prevalence, persistence, and phenotypic variation of Aspergillus fumigatus in the outdoor environment in Manchester, UK, over a 2-year period. Medical Mycology, 2014, 52, 367-375.	0.7	31
13	Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly(lactic) acid (PLA) in soil and compost. International Biodeterioration and Biodegradation, 2014, 95, 301-310.	3.9	68
14	Short-Term Interactive Effects of Biochar, Green Manure, and Inorganic Fertilizer on Soil Properties and Agronomic Characteristics of Maize. Agricultural Research, 2014, 3, 128-136.	1.7	45
15	The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polymer Degradation and Stability, 2013, 98, 2063-2071.	5.8	185
16	Maize Residue Interaction with High Quality Organic Materials: Effects on Decomposition and Nutrient Release Dynamics. Agricultural Research, 2013, 2, 58-67.	1.7	23
17	Fungal Communities Associated with the Biodegradation of Polyester Polyurethane Buried under Compost at Different Temperatures. Applied and Environmental Microbiology, 2013, 79, 7313-7324.	3.1	79
18	Scanning Electron Microscopy and Fermentation Studies on Selected Known Maize Starch Mutants Using STARGENâ"¢ Enzyme Blends. Bioenergy Research, 2012, 5, 330-340.	3.9	12

GEOFFREY D ROBSON

#	Article	IF	CITATIONS
19	Characterisation of cold-tolerant fungi from a decomposing High Arctic moss. Soil Biology and Biochemistry, 2011, 43, 1975-1979.	8.8	11
20	Laccases of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation: production of a novel laccase isoform. Mycological Research, 2008, 112, 1080-1084.	2.5	47
21	Characterisation of Aft1 a Fot1/Pogo type transposon of Aspergillus fumigatus. Fungal Genetics and Biology, 2008, 45, 117-126.	2.1	24
22	TheAspergillus fumigatusmetacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress. Molecular Microbiology, 2007, 63, 591-604.	2.5	86
23	Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. BMC Genomics, 2007, 8, 158.	2.8	144
24	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272
25	Correlation betweenin vitrogrowth rate andin vivovirulence inAspergillus fumigatus. Medical Mycology, 2005, 43, 397-401.	0.7	50
26	Combining transcriptome data with genomic and cDNA sequence alignments to make confident functional assignments for Aspergillus nidulans genes. Mycological Research, 2004, 108, 853-857.	2.5	25
27	Clutamic protease distribution is limited to filamentous fungi. FEMS Microbiology Letters, 2004, 239, 95-101.	1.8	42
28	Characterisation and expression of phospholipases B from the opportunistic fungusAspergillus fumigatus. FEMS Microbiology Letters, 2004, 239, 87-93.	1.8	53
29	TheAspergillus nigerannexin,anxC3.1is constitutively expressed and is not essential for protein secretion. FEMS Microbiology Letters, 2004, 239, 163-169.	1.8	13
30	Comparison of extracellular phospholipase activities in clinical and environmentalAspergillus fumigatusisolates. Medical Mycology, 2004, 42, 81-86.	0.7	33
31	Use of expressed sequence tag analysis and cDNA microarrays of the filamentous fungus Aspergillus nidulans. Fungal Genetics and Biology, 2004, 41, 199-212.	2.1	46
32	Trypsin-like protease (TLP) production in Fusarium oxysporum and Fusarium venenatum and use of the TLP promoter for recombinant protein (glucoamylase) production. Enzyme and Microbial Technology, 2003, 33, 85-91.	3.2	7
33	The Development of a Bioluminescence Assay to Compare the Efficacy of Biocides Incorporated into Plasticised PVC. Biofouling, 2002, 18, 21-27.	2.2	7
34	Solubilization of α-FeO(OH), ThO ₂ .2H ₂ O and γ-UO ₃ by hydroxamate and carboxylate Hgands. Journal of Nuclear Science and Technology, 2002, 39, 251-254.	1.3	5
35	A Study of the Protein Secretory Pathway of Aspergillus niger Using a Glucoamylase–GFP Fusion Protein. Fungal Genetics and Biology, 2001, 32, 55-65.	2.1	33
36	Evolution of a recombinant (gucoamylase-producing) strain ofFusarium venenatum A3/5 in chemostat culture. Biotechnology and Bioengineering, 2001, 73, 146-156.	3.3	24

GEOFFREY D ROBSON

#	Article	IF	CITATIONS
37	Combined use of growth rate correlated and growth rate independent promoters for recombinant glucoamylase production inFusarium venenatum. FEMS Microbiology Letters, 2001, 194, 229-234.	1.8	7
38	Green Fluorescent Protein as a Novel Indicator of Antimicrobial Susceptibility in <i>Aureobasidium pullulans</i> . Applied and Environmental Microbiology, 2001, 67, 5614-5620.	3.1	39
39	pH oscillations and constant low pH delay the appearance of highly branched (colonial) mutants in chemostat cultures of the quornî myco-protein fungus, Fusarium graminearum A3/5. , 2000, 51, 61-68.		16
40	Growth-rate-independent production of recombinant glucoamylase byFusarium venenatum JeRS 325. , 2000, 68, 245-251.		16
41	Fungal Colonization and Biodeterioration of Plasticized Polyvinyl Chloride. Applied and Environmental Microbiology, 2000, 66, 3194-3200.	3.1	164
42	The Effect of Organic Nitrogen Sources on Recombinant Glucoamylase Production by Aspergillus niger in Chemostat Culture. Fungal Genetics and Biology, 2000, 31, 125-133.	2.1	29
43	Evolution of Aspergillus niger and A. nidulans in glucose-limited chemostat cultures, as indicated by oscillations in the frequency of cycloheximide resistant and morphological mutants. Mycological Research, 2000, 104, 333-337.	2.5	6
44	Plasticizers Increase Adhesion of the Deteriogenic Fungus <i>Aureobasidium pullulans</i> to Polyvinyl Chloride. Applied and Environmental Microbiology, 1999, 65, 3575-3581.	3.1	68
45	pH regulation of recombinant glucoamylase production inFusarium venenatum JeRS 325, a transformant with aFusarium oxysporum alkaline (trypsin-like) protease promoter. , 1999, 64, 368-372.		9
46	Effect of branch frequency inAspergillus oryzae on protein secretion and culture viscosity. , 1999, 65, 638-648.		66
47	Mutants with general growth rate advantages are the predominant morphological mutants to be isolated from the Quorn® production plant. Mycological Research, 1998, 102, 221-227.	2.5	11
48	Recombinant Glucoamylase Production byAspergillus nigerB1 in Chemostat and pH Auxostat Cultures. Fungal Genetics and Biology, 1998, 25, 100-109.	2.1	38
49	Protoplast production and transformation of morphological mutants of the Quorn® myco-protein fungus, Fusarium graminearum A3/5, using the hygromycin B resistance plasmid pAN7–1. Mycological Research, 1997, 101, 871-877.	2.5	22
50	Polarized Growth of Fungal Hyphae Is Defined by an Alkaline pH Gradient. Fungal Genetics and Biology, 1996, 20, 289-298.	2.1	46
51	Evolution of Fusarium graminearum A3/5 grown in a series of glucose-limited chemostat cultures at a high dilution rate. Mycological Research, 1995, 99, 173-178.	2.5	14
52	Stability of recombinant protein production byPenicillium chrysogenumin prolonged chemostat culture. FEMS Microbiology Letters, 1995, 133, 245-251.	1.8	10
53	Use of pH auxostats to grow filamentous fungi in continuous flow culture at maximum specific growth rate. FEMS Microbiology Letters, 1995, 126, 151-157.	1.8	9
54	Phosphoinositides Play a Role in Hyphal Extension and Branching in Neurospora crassa. Experimental Mycology, 1995, 19, 71-80.	1.6	11

GEOFFREY D ROBSON

#	Article	IF	CITATIONS
55	Phosphoinositide turnover does not mediate the effects of light or choline, or the relief of derepression of glucose metabolism in filamentous fungi. Mycological Research, 1994, 98, 291-294.	2.5	8
56	Development of morphological heterogeneity in glucose-limited chemostat cultures of Aspergillus oryzae. Mycological Research, 1994, 98, 95-100.	2.5	21
57	Betaine transport in Fusarium graminearum. Mycological Research, 1994, 98, 176-178.	2.5	7
58	Multiple isomers of phosphatidyl inositol monophosphate and inositol bis- and trisphosphates from filamentous fungi. FEMS Microbiology Letters, 1993, 110, 147-152.	1.8	12
59	Growth kinetics of the thermophilic fungus Thermomyces lanuginosus. Mycological Research, 1993, 97, 665-669.	2.5	5
60	Characterization of morphological mutants generated spontaneously in glucose-limited, continuous flow cultures of Fusarium graminearum A3/5. Mycological Research, 1992, 96, 555-562.	2.5	25
61	Evidence for the independent regulation of hyphal extension and branch initiation inFusarium graminearumA3 5. FEMS Microbiology Letters, 1992, 90, 179-184.	1.8	7
62	Nutrient-dependent selection of morphological mutants ofFusarium graminearum A3/5 isolated from long-term continuous flow cultures. Biotechnology and Bioengineering, 1992, 40, 1181-1189.	3.3	24
63	Antagonism by sugars of the effects of validamycin A on growth and morphology of Rhizoctonia cerealis. Mycological Research, 1991, 95, 129-134.	2.5	11
64	Low calcium concentrations induce increased branching in Fusarium graminearum. Mycological Research, 1991, 95, 561-565.	2.5	41
65	Phosphatidylinositol 4,5-bisphosphate (PIP2) is present in Fusarium graminearum. Mycological Research, 1991, 95, 1082-1084.	2.5	11
66	Appearance of morphological (colonial) mutants in glucose-limited, continuous flow cultures of Fusarium graminearum A3/5. Mycological Research, 1991, 95, 1284-1288.	2.5	27