Katherine C Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9555010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anatomically informed deep learning on contrast-enhanced cardiac magnetic resonance imaging for scar segmentation and clinical feature extraction. Cardiovascular Digital Health Journal, 2022, 3, 2-13.	1.3	14
2	Role of Multimodality Imaging in the Assessment of Myocardial Infarction With Nonobstructive Coronary Arteries: Beyond Conventional Coronary Angiography. Journal of the American Heart Association, 2022, 11, e022787.	3.7	19
3	Multimodality Imaging in Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation: Cardiovascular Imaging, 2022, 15, CIRCIMAGING121013725.	2.6	17
4	More Than Meets the Eye. JACC: Cardiovascular Imaging, 2022, 15, 793-795.	5.3	2
5	Association of HIV Serostatus and Inflammation With Ascending Aortic Size. Journal of the American Heart Association, 2022, 11, e023997.	3.7	2
6	ASSOCIATIONS BETWEEN HIGH SENSITIVITY TROPONIN LEVELS, HIV SEROSTATUS AND CARDIAC MRI MEASURES. Journal of the American College of Cardiology, 2022, 79, 1630.	2.8	0
7	Arrhythmic sudden death survival prediction using deep learning analysis of scarring in the heart. , 2022, 1, 334-343.		43
8	Association of left ventricular tissue heterogeneity and intramyocardial fat on computed tomography with ventricular arrhythmias in ischemic cardiomyopathy. Heart Rhythm O2, 2022, 3, 241-247.	1.7	4
9	Multimodality Evaluation of Aortic Insufficiency and Aortitis in Rheumatologic Diseases. Frontiers in Cardiovascular Medicine, 2022, 9, 874242.	2.4	3
10	Effect of HIV Serostatus on ICU Admission and Mortality Among Hospitalized Patients With Coronavirus Disease 2019 (COVID-19). Journal of Acquired Immune Deficiency Syndromes (1999), 2022, 90, e13-e16.	2.1	2
11	CE-522-03 LONGITUDINAL PREDICTION OF VENTRICULAR ARRHYTHMIAS IN PATIENTS WITH ARRHYTHMOGENIC RIGHT VENTRICULAR CARDIOMYOPATHY. Heart Rhythm, 2022, 19, S27-S28.	0.7	0
12	DH-575-04 ARRHYTHMIC SUDDEN DEATH (SCDA) SURVIVAL PREDICTION USING DEEP LEARNING (DL) ANALYSIS OF CONTRAST-ENHANCED CARDIAC MAGNETIC RESONANCE IMAGING (LGE-CMR). Heart Rhythm, 2022, 19, S22.	0.7	0
13	Myocardial ATP depletion detected noninvasively predicts sudden cardiac death risk in patients with heart failure. JCI Insight, 2022, 7, .	5.0	3
14	HIV and Global Cardiovascular Health. Current Cardiology Reports, 2022, 24, 1149-1157.	2.9	10
15	Testosterone use and shorter electrocardiographic QT interval duration in men living with and without HIV. HIV Medicine, 2021, 22, 418-421.	2.2	1
16	Associations Between HIV Serostatus and Cardiac Structure and Function Evaluated by 2â€Dimensional Echocardiography in the Multicenter AIDS Cohort Study. Journal of the American Heart Association, 2021, 10, e019709.	3.7	13
17	Human immunodeficiency viral infection and differences in interstitial ventricular fibrosis and left atrial size. European Heart Journal Cardiovascular Imaging, 2021, 22, 888-895.	1.2	15
18	Ventricular ectopy and arrhythmia by HIV serostatus, viremia, and CD4+ cell count. Aids, 2021, 35, 846-849	2.2	2

#	Article	IF	CITATIONS
19	The Johns Hopkins Ciccarone Center's expanded â€~ABC's approach to highlight 2020 updates in cardiovascular disease prevention. American Journal of Preventive Cardiology, 2021, 6, 100181.	3.0	0
20	Association between human immunodeficiency virus serostatus and the prevalence of atrial fibrillation. Medicine (United States), 2021, 100, e26663.	1.0	4
21	B-PO05-171 ASSOCIATION OF LEFT VENTRICULAR TISSUE HETEROGENEITY ON COMPUTED TOMOGRAPHY WITH VENTRICULAR ARRHYTHMIAS IN ISCHEMIC CARDIOMYOPATHY PATIENTS. Heart Rhythm, 2021, 18, S441-S442.	0.7	0
22	B-PO02-177 INCREASED SUBSTRATE HETEROGENEITY ASSESSED BY LGE-CMR IS ASSOCIATED WITH VENTRICULAR ARRHYTHMIAS AND MORTALITY IN PATIENTS WITH CARDIAC SARCOIDOSIS. Heart Rhythm, 2021, 18, S170.	0.7	0
23	B-PO05-174 CORE SCAR BURDEN ON CARDIAC MAGNETIC RESONANCE IMAGING IS ASSOCIATED WITH CLUSTERED VENTRICULAR ARRHYTHMIA AND LONGER CYCLE LENGTH IN NONISCHEMIC CARDIOMYOPATHY. Heart Rhythm, 2021, 18, S443.	0.7	0
24	Right Atrial Epidermoid Cyst: An Unusual Mass Discovered in the Workup for Arrhythmia in Pregnancy. Case, 2021, 5, 408-411.	0.3	0
25	Left Atrial Function in Patients with Coronavirus Disease 2019 and Its Association with Incident Atrial Fibrillation/Flutter. Journal of the American Society of Echocardiography, 2021, 34, 1106-1109.	2.8	11
26	Fast Posterior Estimation of Cardiac Electrophysiological Model Parameters via Bayesian Active Learning. Frontiers in Physiology, 2021, 12, 740306.	2.8	5
27	CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY). Scientific Reports, 2021, 11, 22683.	3.3	6
28	Spatial dispersion analysis of LGE MR for prediction of ventricular arrhythmias in patients with cardiac sarcoidosis. PACE - Pacing and Clinical Electrophysiology, 2021, 44, 2067-2074.	1.2	2
29	HIV Infection Is Associated With Variability in Ventricular Repolarization. Circulation, 2020, 141, 176-187.	1.6	22
30	Associations between QT interval subcomponents, HIV serostatus, and inflammation. Annals of Noninvasive Electrocardiology, 2020, 25, e12705.	1.1	13
31	A CURE for What Ails in CardiacÂResynchronization Therapy. JACC: Cardiovascular Imaging, 2020, 13, 937-939.	5.3	1
32	Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy. Journal of the American Heart Association, 2020, 9, e017002.	3.7	25
33	Prevalence and Clinical Correlates of Echo-Estimated Right and Left Heart Filling Pressures in Hospitalized Patients With Coronavirus Disease 2019. , 2020, 2, e0227.		4
34	Substrate Spatial Complexity Analysis for the Prediction of Ventricular Arrhythmias in Patients With Ischemic Cardiomyopathy. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e007975.	4.8	33
35	Embedding high-dimensional Bayesian optimization via generative modeling: Parameter personalization of cardiac electrophysiological models. Medical Image Analysis, 2020, 62, 101670.	11.6	14
36	Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis. BMC Medical Research Methodology, 2020, 20, 1.	3.1	161

#	Article	IF	CITATIONS
37	Improving Clinical Translation of Machine Learning Approaches Through Clinician-Tailored Visual Displays of Black Box Algorithms: Development and Validation. JMIR Medical Informatics, 2020, 8, e15791.	2.6	17
38	Abstract 16017: Anatomically-Guided Deep Learning (DL) Approach to Late Gadolinium Enhanced (LGE)-CMR Left Ventricle (LV) Segmentation Enables Efficient and Accurate Clinical Analyses. Circulation, 2020, 142, .	1.6	0
39	Abstract 16148: Serum Gdf-15 Identifies Patients at Risk for Acute Heart Failure but Not Ventricular Arrhythmias and Sudden Death. Circulation, 2020, 142, .	1.6	0
40	Abstract 15681: Reduced Left Atrial Strain is Associated With the Development of Atrial Arrhythmias in Hospitalized Patients With COVID-19. Circulation, 2020, 142, .	1.6	0
41	Bringing Order to Disorder. JACC: Cardiovascular Imaging, 2019, 12, 1185-1187.	5.3	1
42	Intravascular Stem Cell Bioreactor for Prevention of Adverse Remodeling After Myocardial Infarction. Journal of the American Heart Association, 2019, 8, e012351.	3.7	9
43	Applications of Cardiac MR Imaging in Electrophysiology. Magnetic Resonance Imaging Clinics of North America, 2019, 27, 465-473.	1.1	3
44	Predictors of electrocardiographic QT interval prolongation in men with HIV. Heart, 2019, 105, 559-565.	2.9	31
45	Response by Jablonowski et al to Letter Regarding Article, "Cardiovascular Magnetic Resonance to Predict Appropriate Implantable Cardioverter Defibrillator Therapy in Ischemic and Nonischemic Cardiomyopathy Patients Using Late Gadolinium Enhancement Border Zone: Comparison of Four Analysis Methods― Circulation: Cardiovascular Imaging, 2018, 11, e007333.	2.6	0
46	Left Ventricular Scar and Prognosis in Chronic Chagas Cardiomyopathy. Journal of the American College of Cardiology, 2018, 72, 2567-2576.	2.8	46
47	Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology. Medical Image Analysis, 2018, 48, 43-57.	11.6	32
48	Impaired left atrial function predicts inappropriate shocks in primary prevention implantable cardioverterâ€defibrillator candidates. Journal of Cardiovascular Electrophysiology, 2017, 28, 796-805.	1.7	10
49	Spatially Adaptive Multi-Scale Optimization for Local Parameter Estimation in Cardiac Electrophysiology. IEEE Transactions on Medical Imaging, 2017, 36, 1966-1978.	8.9	17
50	Sudden Cardiac Death Substrate Imaged by Magnetic Resonance Imaging. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	59
51	Cardiovascular Magnetic Resonance to Predict Appropriate Implantable Cardioverter Defibrillator Therapy in Ischemic and Nonischemic Cardiomyopathy Patients Using Late Gadolinium Enhancement Border Zone. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	39
52	Imaging-Based Simulations for Predicting Sudden Death and Guiding Ventricular Tachycardia Ablation. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	4.8	54
53	Quantifying left atrial structure and function using single-plane tissue-tracking cardiac magnetic resonance. Magnetic Resonance Imaging, 2017, 42, 130-138.	1.8	8
54	HIV and Ventricular Arrhythmia Susceptibility: Insights from Cardiac Patch Monitoring. Journal of Clinical Case Reports, 2017, 7, .	0.0	1

#	Article	IF	CITATIONS
55	Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nature Communications, 2016, 7, 11437.	12.8	302
56	Associations between scar characteristics by cardiac magnetic resonance and changes in left ventricular ejection fraction in primary prevention defibrillator recipients. Heart Rhythm, 2016, 13, 1661-1666.	0.7	11
57	Powerlessness of a Number. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	15
58	Screening for Cardiac Magnetic Resonance Scar Features by 12-Lead ECG, in Patients with Preserved Ejection Fraction. , 2016, 21, 49-59.		14
59	Myocardial Infarct Segmentation From Magnetic Resonance Images for Personalized Modeling of Cardiac Electrophysiology. IEEE Transactions on Medical Imaging, 2016, 35, 1408-1419.	8.9	41
60	Shape analysis of hypertrophic and hypertensive heart disease using MRI-based 3D surface models of left ventricular geometry. Medical Image Analysis, 2016, 29, 12-23.	11.6	12
61	Perfusion Measurements of the Myocardium. , 2015, , 1279-1354.		1
62	Brief Report: Antisynthetase Syndrome–Associated Myocarditis. Journal of Cardiac Failure, 2014, 20, 939-945.	1.7	24
63	Comparison of the Relation Between Left Ventricular Anatomy and QRS Duration in Patients With Cardiomyopathy With Versus Without Left Bundle Branch Block. American Journal of Cardiology, 2014, 113, 1717-1722.	1.6	29
64	Presence of scar by late gadolinium enhancement is a strong predictor of events in Chagas Heart Disease. Journal of Cardiovascular Magnetic Resonance, 2014, 16, P343.	3.3	4
65	Autologous Mesenchymal Stem Cells Produce Concordant Improvements in Regional Function, Tissue Perfusion, and Fibrotic Burden When Administered to Patients Undergoing Coronary Artery Bypass Grafting. Circulation Research, 2014, 114, 1302-1310.	4.5	305
66	lmage-based left ventricular shape analysis for sudden cardiac death risk stratification. Heart Rhythm, 2014, 11, 1693-1700.	0.7	31
67	Myocardial Infarct Segmentation and Reconstruction from 2D Late-Gadolinium Enhanced Magnetic Resonance Images. Lecture Notes in Computer Science, 2014, 17, 554-561.	1.3	8
68	Perfusion Measurements of the Myocardium: Radionuclide Methods and Related Techniques. , 2014, , 1-89.		0
69	Abstract 18343: Antisynthetase Syndrome-Associated Myocarditis. Circulation, 2014, 130, .	1.6	1
70	Right, But Not Left, Bundle Branch Block Is Associated With Large Anteroseptal Scar. Journal of the American College of Cardiology, 2013, 62, 959-967.	2.8	46
71	Left ventricular mechanical dyssynchrony by cardiac magnetic resonance is greater in patients with strict vs. conventional ECG criteria for left bundle branch block. Journal of Cardiovascular Magnetic Resonance, 2013, 15, P152.	3.3	1
72	Localization of myocardial scar in patients with cardiomyopathy and left bundle branch block using electrocardiographic Selvester QRS scoring - comparison with cardiac magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2013, 15, P61.	3.3	0

#	Article	IF	CITATIONS
73	Metabolic Rates of ATP Transfer Through Creatine Kinase (CK Flux) Predict Clinical Heart Failure Events and Death. Science Translational Medicine, 2013, 5, 215re3.	12.4	93
74	Localization of myocardial scar in patients with cardiomyopathy and left bundle branch block using electrocardiographic Selvester QRS scoring. Journal of Electrocardiology, 2013, 46, 249-255.	0.9	17
75	Cardiac MRI scar patterns differ by sex in an implantable cardioverter-defibrillator and cardiac resynchronization therapy cohort. Heart Rhythm, 2013, 10, 659-665.	0.7	22
76	Left ventricular mechanical dyssynchrony by cardiac magnetic resonance is greater in patients with strict vs nonstrict electrocardiogram criteria for left bundle-branch block. American Heart Journal, 2013, 165, 956-963.	2.7	28
77	Screening Entire Health System ECG Databases to Identify Patients at Increased Risk of Death. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 1156-1162.	4.8	29
78	Left-ventricular shape analysis for predicting sudden cardiac death risk. , 2012, 2012, 4067-70.		4
79	Response to Letter Regarding Article, "Combined Cardiac Magnetic Resonance Imaging and C-Reactive Protein Levels Identify a Cohort at Low Risk for Defibrillator Firings and Death― Circulation: Cardiovascular Imaging, 2012, 5, .	2.6	0
80	Combined Cardiac Magnetic Resonance Imaging and C-Reactive Protein Levels Identify a Cohort at Low Risk for Defibrillator Firings and Death. Circulation: Cardiovascular Imaging, 2012, 5, 178-186.	2.6	93
81	CMR of microvascular obstruction and hemorrhage in myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 72.	3.3	136
82	An ECG index of myocardial scar enhances prediction of defibrillator shocks: An analysis of the Sudden Cardiac Death in Heart Failure Trial. Heart Rhythm, 2011, 8, 38-45.	0.7	58
83	Review: Update on Newer Antihypertensive Medicines and Interventions. Journal of Cardiovascular Pharmacology and Therapeutics, 2010, 15, 257-267.	2.0	4
84	Imaging myocardial scar and arrhythmic risk prediction—a role for the electrocardiogram?. Journal of Electrocardiology, 2009, 42, 138.e1-138.e8.	0.9	15
85	MRI with late gadolinium enhancement as a predictor of ventricular arrhythmias. Current Cardiovascular Imaging Reports, 2009, 2, 116-123.	0.6	2
86	Variation on a Theme. JACC: Cardiovascular Imaging, 2009, 2, 843-845.	5.3	10
87	Late Gadolinium Enhancement by Cardiovascular Magnetic Resonance Heralds an Adverse Prognosis in Nonischemic Cardiomyopathy. Journal of the American College of Cardiology, 2008, 51, 2414-2421.	2.8	535
88	Cardiac Magnetic Resonance Assessment of Dyssynchrony and Myocardial Scar Predicts Function Class Improvement Following Cardiac Resynchronization Therapy. JACC: Cardiovascular Imaging, 2008, 1, 561-568.	5.3	200
89	ECG Quantification of Myocardial Scar in Cardiomyopathy Patients With or Without Conduction Defects. Circulation: Arrhythmia and Electrophysiology, 2008, 1, 327-336.	4.8	134
90	Response to Letter Regarding Article, "Infarct Tissue Heterogeneity by Magnetic Resonance Imaging Identifies Enhanced Cardiac Arrhythmia Susceptibility in Patients With Left Ventricular Dysfunction― Circulation, 2007, 116, .	1.6	12

6

#	Article	IF	CITATIONS
91	Infarct Tissue Heterogeneity by Magnetic Resonance Imaging Identifies Enhanced Cardiac Arrhythmia Susceptibility in Patients With Left Ventricular Dysfunction. Circulation, 2007, 115, 2006-2014.	1.6	790
92	MRI Assessment of Myocardial Viability. Seminars in Ultrasound, CT and MRI, 2006, 27, 11-19.	1.5	8
93	Imaging microvascular obstruction and its clinical significance following acute myocardial infarction. Heart Failure Reviews, 2006, 11, 305-312.	3.9	20
94	Contrast-Enhanced Multidetector Computed Tomography Viability Imaging After Myocardial Infarction. Circulation, 2006, 113, 394-404.	1.6	379
95	Utility of cardiac MRI in the diagnosis of hypertrophic cardiomyopathy. Current Cardiology Reports, 2006, 8, 41.	2.9	1
96	Assessment of non-st-segment elevation acute coronary syndromes with cardiac MRI. Current Cardiology Reports, 2006, 8, 42-3.	2.9	0
97	Myocardial perfusion imaging by magnetic resonance imaging. Current Cardiology Reports, 2003, 5, 63-68.	2.9	13
98	Noninvasive Imaging of Myocardial Viability. Circulation Research, 2003, 93, 1146-1158.	4.5	99
99	Microvascular Obstruction After Nonsurgical Septal Reduction for the Treatment of Hypertrophic Cardiomyopathy. Circulation, 2001, 104, 1868-1868.	1.6	9
100	Microvascular Obstruction and Left Ventricular Remodeling Early After Acute Myocardial Infarction. Circulation, 2000, 101, 2734-2741.	1.6	270
101	Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. Journal of the American College of Cardiology, 1998, 32, 1756-1764.	2.8	300
102	Prognostic Significance of Microvascular Obstruction by Magnetic Resonance Imaging in Patients With Acute Myocardial Infarction. Circulation, 1998, 97, 765-772.	1.6	1,272
103	Spatial Dispersion Analysis of LGE-CMR for Prediction of Ventricular Arrhythmias in Patients with Cardiac Sarcoidosis. SSRN Electronic Journal, 0, , .	0.4	0