
Michiro Muraki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9552776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensitization to cell death induced by soluble Fas ligand and agonistic antibodies with exogenous agents: A review. AIMS Medical Science, 2020, 7, 122-203.	0.4	2
2	Confirmation of covalently-linked structure and cell-death inducing activity in site-specific chemical conjugates of human Fas ligand extracellular domain. BMC Research Notes, 2018, 11, 395.	1.4	1
3	Development of expression systems for the production of recombinant human Fas ligand extracellular domain derivatives using Pichia pastoris and preparation of the conjugates by site-specific chemical modifications: A review. AIMS Bioengineering, 2018, 5, 39-62.	1.1	2
4	Site-specific chemical conjugation of human Fas ligand extracellular domain using trans-cyclooctene – methyltetrazine reactions. BMC Biotechnology, 2017, 17, 56.	3.3	4
5	Preparation of a functional fluorescent human Fas ligand extracellular domain derivative using a three-dimensional structure guided site-specific fluorochrome conjugation. SpringerPlus, 2016, 5, 997.	1.2	3
6	Improved production of recombinant human Fas ligand extracellular domain in Pichia pastoris: yield enhancement using disposable culture-bag and its application to site-specific chemical modifications. BMC Biotechnology, 2014, 14, 19.	3.3	5
7	Heterologous Production of Death Ligands' and Death Receptors' Extracellular Domains: Structural Features and Efficient Systems. Protein and Peptide Letters, 2012, 19, 867-879.	0.9	2
8	Improved isolation and purification of functional human Fas receptor extracellular domain using baculovirus – silkworm expression system. Protein Expression and Purification, 2011, 80, 102-109.	1.3	5
9	Efficient production of human Fas receptor extracellular domain–human IgG1 heavy chain Fc domain fusion protein using baculovirus/silkworm expression system. Protein Expression and Purification, 2010, 73, 209-216.	1.3	11
10	Improved secretion of human Fas ligand extracellular domain by N-terminal part truncation in Pichia pastoris and preparation of the N-linked carbohydrate chain trimmed derivative. Protein Expression and Purification, 2008, 60, 205-213.	1.3	9
11	Secretory expression of synthetic human Fas ligand extracellular domain gene in Pichia pastoris: Influences of tag addition and N-glycosylation site deletion, and development of a purification method. Protein Expression and Purification, 2006, 50, 137-146.	1.3	16
12	On the Importance of Carbohydrate-Aromatic Interactions for the Molecular Recognition of Oligosaccharides by Proteins: NMR Studies of the Structure and Binding Affinity of AcAMP2-like Peptides with Non-Natural Naphthyl and Fluoroaromatic Residues. Chemistry - A European Journal, 2005, 11, 7060-7074.	3.3	110
13	X-ray structural analysis of the ligand-recognition mechanism in the dual-affinity labeling of c-type lysozyme with 2?,3?-epoxypropyl ?-glycoside ofN-acetyllactosamine. Journal of Molecular Recognition, 2003, 16, 72-82.	2.1	4
14	Cytoagglutination and cytotoxicity of Wheat Germ Agglutinin isolectins against normal lymphocytes and cultured leukemic cell lines—relationship between structure and biological activity. Biochimica Et Biophysica Acta - General Subjects, 2003, 1619, 144-150.	2.4	22
15	Interactions of wheat-germ agglutinin with GlcNAcl̂²1,6Gal sequence. Biochimica Et Biophysica Acta - General Subjects, 2002, 1569, 10-20.	2.4	48
16	The Importance of Ch / π Interactions to the Function of Carbohydrate Binding Proteins. Protein and Peptide Letters, 2002, 9, 195-209.	0.9	87
17	Structure ofUrtica dioicaagglutinin isolectin I: dimer formation mediated by two zinc ions bound at the sugar-binding site. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1513-1517.	2.5	18
18	Chemically prepared hevein domains: effect of C-terminal truncation and the mutagenesis of aromatic residues on the affinity for chitin. Protein Engineering, Design and Selection, 2000, 13, 385-389.	2.1	34

MICHIRO MURAKI

#	Article	IF	CITATIONS
19	Crystal structures of Urtica dioica agglutinin and its complex with tri-N-acetylchitotriose. Journal of Molecular Biology, 2000, 297, 673-681.	4.2	73
20	Proteinâ^'Carbohydrate Interactions in Human Lysozyme Probed by Combining Site-Directed Mutagenesis and Affinity Labeling. Biochemistry, 2000, 39, 292-299.	2.5	38
21	Human Lysozyme Secretion Increased by Alpha-factor Pro-sequence inPichia pastoris. Bioscience, Biotechnology and Biochemistry, 1999, 63, 1977-1983.	1.3	51
22	Dual Affinity Labeling of the Active Site of Human Lysozyme with an N-Acetyllactosamine Derivative: First Ligand Assisted Recognition of the Second Ligand,. Biochemistry, 1999, 38, 540-548.	2.5	6
23	Crystallographic evaluation of internal motion of human α-lactalbumin refined by full-matrix least-squares method 1 1Edited by R. Huber. Journal of Molecular Biology, 1999, 287, 347-358.	4.2	39
24	Full-matrix least-squares refinement of lysozymes and analysis of anisotropic thermal motion. Proteins: Structure, Function and Bioinformatics, 1998, 30, 232-243.	2.6	34
25	X-ray Structure of Human Lysozyme Labelled with 2',3'-Epoxypropyl β-Glycoside of Man-β 1,4-GlcNAc. Structural Change and Recognition Specificity at Subsite B. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 834-843.	2.5	4
26	Importance of van der Waals contact between Glu 35 and Trp 109 to the catalytic action of human lysozyme. Protein Science, 1997, 6, 473-476.	7.6	9
27	X-ray Structure of Turkey-Egg Lysozyme Complex with Tri-N-acetylchitotriose. Lack of Binding Ability at SubsiteA. Acta Crystallographica Section D: Biological Crystallography, 1997, 53, 650-657.	2.5	18
28	Origin of Carbohydrate Recognition Specificity of Human Lysozyme Revealed by Affinity Labeling,. Biochemistry, 1996, 35, 13562-13567.	2.5	41
29	X-ray structure of turkey egg lysozyme complex with di-N-acetyl-chitobiose. Recognition and binding of α-anomeric form. Acta Crystallographica Section D: Biological Crystallography, 1995, 51, 718-724.	2.5	4
30	Site-Directed Mutagenesis and Sugar-Binding Properties of the Wheat Germ Agglutinin Mutants Tyr73Phe and Phe116Tyr. FEBS Journal, 1995, 233, 27-34.	0.2	10
31	Alteration of the substrate specificity of human lysozyme by site-specific intermolecular cross-linking. FEBS Letters, 1994, 355, 271-274.	2.8	3
32	Role of Arg115 in the Catalytic Action of Human Lysozyme. Journal of Molecular Biology, 1993, 233, 524-535.	4.2	28
33	Dissection of the functional role of structural elements of tyrosine-63 in the catalytic action of human lysozyme. Biochemistry, 1992, 31, 9212-9219.	2.5	32
34	Xâ€ ғ ay structure of glu 53 human lysozyme. Protein Science, 1992, 1, 1447-1453.	7.6	6
35	Expression and secretion of wheat germ agglutinin by Saccharomyces cerevisiae. FEBS Journal, 1992, 210, 989-997.	0.2	20
36	The importance of precise positioning of negatively charged carâ~ylate in the catalytic action of human lysozyme. BBA - Proteins and Proteomics, 1991, 1079, 229-237.	2.1	20

MICHIRO MURAKI

#	Article	IF	CITATIONS
37	A structural requirement in the subsite F of lysozyme. The role of arginine 115 in human lysozyme revealed by site-directed mutagenesis. FEBS Journal, 1989, 179, 573-579.	0.2	11
38	Engineering of human lysozyme as a polyelectrolyte by the alteration of molecular surface charge. Protein Engineering, Design and Selection, 1988, 2, 49-54.	2.1	44
39	Engineering of the active site of human lysozyme: conversion of aspartic acid 53 to glutamic acid and tyrosine 63 to tryptophan or phenylalanine. BBA - Proteins and Proteomics, 1987, 911, 376-380.	2.1	17
40	The roles of conserved aromatic amino-acid residues in the active site of human lysozyme: a site-specific mutagenesis study. BBA - Proteins and Proteomics, 1987, 916, 66-75.	2.1	22
41	Expression of synthetic human-lysozyme gene in Saccharomyces cerevisiae: use of a synthetic chicken-lysozyme signal sequence for secretion and processing. Gene, 1986, 43, 273-279.	2.2	81
42	Expression of Synthetic Human Lysozyme Gene inEscherichia coli. Agricultural and Biological Chemistry, 1986, 50, 713-723.	0.3	5
43	Expression of synthetic human lysozyme gene in Escherichia coli Agricultural and Biological Chemistry, 1986, 50, 713-723.	0.3	19
44	Expression of synthetic human lysozyme gene in Escherichia coli Agricultural and Biological Chemistry, 1985, 49, 2829-2831.	0.3	13
45	Expression of Synthetic Human Lysozyme Gene in <i>Escherichia coli</i> . Agricultural and Biological Chemistry, 1985, 49, 2829-2831.	0.3	5