Sebastian Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9552672/publications.pdf Version: 2024-02-01

SEBASTIAN KHAN

#	Article	IF	CITATIONS
1	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
2	Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Physical Review D, 2016, 93, .	4.7	701
3	Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. Physical Review D, 2016, 93, .	4.7	511
4	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
5	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
6	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Physical Review D, 2016, 93, .	4.7	286
7	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
8	First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries. Physical Review Letters, 2018, 120, 161102.	7.8	161
9	Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects. Physical Review D, 2019, 99, .	4.7	144
10	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
11	Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Physical Review D, 2019, 100, .	4.7	136
12	Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy. Physical Review D, 2017, 95, .	4.7	123
13	Including higher order multipoles in gravitational-wave models for precessing binary black holes. Physical Review D, 2020, 101, .	4.7	122
14	Improving the NRTidal model for binary neutron star systems. Physical Review D, 2019, 100, .	4.7	119
15	On the properties of the massive binary black hole merger GW170729. Physical Review D, 2019, 100, .	4.7	82
16	Modeling the gravitational wave signature of neutron star black hole coalescences. Physical Review D, 2020, 101, .	4.7	61
17	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
18	The most powerful astrophysical events: Gravitational-wave peak luminosity of binary black holes as predicted by numerical relativity. Physical Review D, 2017, 96, .	4.7	30

SEBASTIAN KHAN

#	Article	IF	CITATIONS
19	Model of gravitational waves from precessing black-hole binaries through merger and ringdown. Physical Review D, 2021, 104, .	4.7	30
20	Gravitational-wave surrogate models powered by artificial neural networks. Physical Review D, 2021, 103, .	4.7	26
21	Multiwaveform inference of gravitational waves. Physical Review D, 2020, 101, .	4.7	22
22	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
23	Enhancing gravitational waveform models through dynamic calibration. Physical Review D, 2019, 99, .	4.7	6
24	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
25	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1