Theo J L Van Hintum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9552624/publications.pdf

Version: 2024-02-01

36 papers 1,198 citations

16 h-index 395702 33 g-index

37 all docs

37 docs citations

37 times ranked

1606 citing authors

#	Article	IF	Citations
1	Genetic erosion in crops: concept, research results and challenges. Plant Genetic Resources: Characterisation and Utilisation, 2010, 8, 1-15.	0.8	287
2	Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theoretical and Applied Genetics, 2010, 120, 1241-1252.	3.6	207
3	EURISCO: The European search catalogue for plant genetic resources. Nucleic Acids Research, 2017, 45, D1003-D1008.	14.5	81
4	Whole-genome resequencing of 445 Lactuca accessions reveals the domestication history of cultivated lettuce. Nature Genetics, 2021, 53, 752-760.	21.4	64
5	Empirical evaluation of DArT, SNP, and SSR marker-systems for genotyping, clustering, and assigning sugar beet hybrid varieties into populations. Plant Science, 2012, 184, 54-62.	3.6	54
6	Population structure revealed by different marker types (SSR or DArT) has an impact on the results of genome-wide association mapping in European barley cultivars. Molecular Breeding, 2012, 30, 951-966.	2.1	49
7	Duplication within and between germplasm collections. Genetic Resources and Crop Evolution, 1995, 42, 135-145.	1.6	48
8	Next-generation genebanking: plant genetic resources management and utilization in the sequencing era. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, 298-307.	0.8	38
9	GERMINATE. A Generic Database for Integrating Genotypic and Phenotypic Information for Plant Genetic Resource Collections. Plant Physiology, 2005, 139, 619-631.	4.8	35
10	Duplication within and between germplasm collections. Genetic Resources and Crop Evolution, 1995, 42, 127-133.	1.6	30
11	Summarised diversity – the Barley Core Collection. Developments in Plant Genetics and Breeding, 2003, , 259-267.	0.6	28
12	Genetic and economic aspects of marker-assisted reduction of redundancy from a wild potato germplasm collection. Genetic Resources and Crop Evolution, 2004, 51, 277-290.	1.6	27
13	The Dynamics of on-farm Management of Sorghum in Ethiopia: Implication for the Conservation and Improvement of Plant Genetic Resources. Genetic Resources and Crop Evolution, 2006, 53, 1385-1403.	1.6	23
14	Sampling Strategies for Composing a Core Collection of Cultivated Barley (Hordeum vulgare s. lat.) Collected in China. Hereditas, 2004, 122, 7-17.	1.4	19
15	Authenticity of Old Cultivars in Genebank Collections: A Case Study on Lettuce. Crop Science, 2011, 51, 736-746.	1.8	19
16	Genebank Operation in the Arena of Access and Benefit-Sharing Policies. Frontiers in Plant Science, 2019, 10, 1712.	3.6	19
17	Generation Challenge Programme (GCP): Standards for Crop Data. OMICS A Journal of Integrative Biology, 2006, 10, 215-219.	2.0	18
18	Barley diversity – an introduction. Developments in Plant Genetics and Breeding, 2003, 7, 3-8.	0.6	13

#	Article	IF	Citations
19	The Generation Challenge Programme comparative plant stress-responsive gene catalogue. Nucleic Acids Research, 2008, 36, D943-D946.	14.5	13
20	Diversity in ex situ genebank collections of barley. Developments in Plant Genetics and Breeding, 2003, , 247-257.	0.6	12
21	Homoplasy corrected estimation of genetic similarity from AFLP bands, and the effect of the number of bands on the precision of estimation. Theoretical and Applied Genetics, 2009, 119, 397-416.	3.6	11
22	Comparison of selection methods for the establishment of a core collection using SSR markers for hazelnut (Corylus avellana L.) accessions from European germplasm repositories. Tree Genetics and Genomes, 2021, 17, 1.	1.6	11
23	Classification of landraces and improved cultivars of hexaploid wheats (Triticum aestivum, T.) Tj ETQq1 1 0.78431	14 _{1.2} BT/C)verlock 10 T
24	Quality indicators for passport data in <i>ex situ</i> genebanks. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 478-485.	0.8	9
25	Reliability of germination testing of ex situ conserved seeds: a genebank case study on outsourced analyses. Plant Genetic Resources: Characterisation and Utilisation, 2012, 10, 134-136.	0.8	9
26	Effects of climate change on the distribution of crop wild relatives in the Netherlands in relation to conservation status and ecotope variation. Global Ecology and Conservation, 2020, 23, e01054.	2.1	9
27	Practical consequences of digital sequence information (DSI) definitions and access and benefitâ€sharing scenarios from a plant genebank's perspective. Plants People Planet, 2022, 4, 23-32.	3.3	9
28	Current taxonomic composition of European genebank material documented in EURISCO. Plant Genetic Resources: Characterisation and Utilisation, 2010, 8, 182-188.	0.8	7
29	Reliable genomic strategies for species classification of plant genetic resources. BMC Bioinformatics, 2021, 22, 173.	2.6	7
30	Analysis of wild Lactuca accessions: conservation and identification of redundancy. Plant Genetic Resources: Characterisation and Utilisation, 2008, 6, 153-163.	0.8	6
31	Climate change and crop wild relatives: can species track their suitable environment, and what do they lose in the process?. Plant Genetic Resources: Characterisation and Utilisation, 2013, 11, 234-237.	0.8	6
32	A historical analysis of diversity trends in French and Dutch lettuce cultivars. Euphytica, 2013, 190, 229-239.	1.2	6
33	Genebanks and genomics: how to interconnect data from both communities?. Plant Genetic Resources: Characterisation and Utilisation, 2015, 13, 90-93.	0.8	5
34	The Generation Challenge Programme Platform: Semantic Standards and Workbench for Crop Science. International Journal of Plant Genomics, 2008, 2008, 1-6.	2,2	5
35	Barley diversity – an outlook. Developments in Plant Genetics and Breeding, 2003, , 269-278.	0.6	3
36	AEGIS, the Virtual European Genebank: Why It Is Such a Good Idea, Why It Is Not Working and How It Could Be Improved. Plants, 2021, 10, 2165.	3.5	2