Maria-Trinidad Herrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9552450/publications.pdf

Version: 2024-02-01

124 papers 6,418 citations

43 h-index 79698 73 g-index

130 all docs

130 docs citations

130 times ranked

7469 citing authors

#	Article	IF	Citations
1	Aminochrome Induces Neuroinflammation and Dopaminergic Neuronal Loss: A New Preclinical Model to Find Anti-inflammatory and Neuroprotective Drugs for Parkinson's Disease. Cellular and Molecular Neurobiology, 2023, 43, 265-281.	3.3	3
2	Role of Microgliosis and NLRP3 Inflammasome in Parkinson's Disease Pathogenesis and Therapy. Cellular and Molecular Neurobiology, 2022, 42, 1283-1300.	3.3	31
3	Heart Matters: Cardiac Dysfunction and Other Autonomic Changes in Parkinson's Disease. Neuroscientist, 2022, 28, 530-542.	3.5	8
4	Brain injections of glial cytoplasmic inclusions induce a multiple system atrophy-like pathology. Brain, 2022, 145, 1001-1017.	7.6	14
5	miR-126-3p and miR-21-5p as Hallmarks of Bio-Positive Ageing; Correlation Analysis and Machine Learning Prediction in Young to Ultra-Centenarian Sicilian Population. Cells, 2022, 11, 1505.	4.1	9
6	Combined 1-Deoxynojirimycin and Ibuprofen Treatment Decreases Microglial Activation, Phagocytosis and Dopaminergic Degeneration in MPTP-Treated Mice. Journal of NeuroImmune Pharmacology, 2021, 16, 390-402.	4.1	21
7	Methods for prospectively incorporating gender into health sciences research. Journal of Clinical Epidemiology, 2021, 129, 191-197.	5.0	38
8	Could Small Heat Shock Protein HSP27 Be a First-Line Target for Preventing Protein Aggregation in Parkinson's Disease?. International Journal of Molecular Sciences, 2021, 22, 3038.	4.1	11
9	A Causal Role for the Right Dorsolateral Prefrontal Cortex in Avoidance of Risky Choices and Making Advantageous Selections. Neuroscience, 2021, 458, 166-179.	2.3	14
10	Identification and inclusion of gender factors in retrospective cohort studies: the GOING-FWD framework. BMJ Global Health, 2021, 6, e005413.	4.7	25
11	A New Tool to Study Parkinsonism in the Context of Aging: MPTP Intoxication in a Natural Model of Multimorbidity. International Journal of Molecular Sciences, 2021, 22, 4341.	4.1	2
12	SEX, GENDER AND CARDIOVASCULAR HEALTH, AN ANALYSIS OF SYNTHETIC DATA FROM A POPULATION BASED STUDY. Journal of the American College of Cardiology, 2021, 77, 3258.	2.8	1
13	Determinants of perceived health and unmet healthcare needs in universal healthcare systems with high gender equality. BMC Public Health, 2021, 21, 1488.	2.9	16
14	Sex, Gender, and Cardiovascular Health in Canadian and Austrian Populations. Canadian Journal of Cardiology, 2021, 37, 1240-1247.	1.7	17
15	Sex, rurality and socioeconomical status in Spanish centennial population (2017). Aging, 2021, 13, 22059-22077.	3.1	4
16	Role of GDF-15, YKL-40 and MMP 9 in patients with end-stage kidney disease: focus on sex-specific associations with vascular outcomes and all-cause mortality. Biology of Sex Differences, 2021, 12, 50.	4.1	11
17	Cardiac tyrosine hydroxylase activation and MB-COMT in dyskinetic monkeys. Scientific Reports, 2021, 11, 19871.	3.3	1
18	Cardiac Changes in Parkinson's Disease: Lessons from Clinical and Experimental Evidence. International Journal of Molecular Sciences, 2021, 22, 13488.	4.1	18

#	Article	IF	CITATIONS
19	Cardiac Noradrenaline Turnover and Heat Shock Protein 27 Phosphorylation in Dyskinetic Monkeys. Movement Disorders, 2020, 35, 698-703.	3.9	8
20	Study of the Link Between Neuronal Death, Glial Response, and MAPK Pathway in Old Parkinsonian Mice. Frontiers in Aging Neuroscience, 2020, 12, 214.	3.4	4
21	Identification of differentially expressed genes profiles in a combined mouse model of Parkinsonism and colitis. Scientific Reports, 2020, 10, 13147.	3.3	7
22	Octodon degus: a natural model of multimorbidity for ageing research. Ageing Research Reviews, 2020, 64, 101204.	10.9	9
23	Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain, 2020, 143, 1462-1475.	7.6	135
24	Identification of distinct pathological signatures induced by patient-derived \hat{l}_{\pm} -synuclein structures in nonhuman primates. Science Advances, 2020, 6, eaaz9165.	10.3	34
25	A role for DJ-1 against oxidative stress in the mammalian retina. Neuroscience Letters, 2019, 708, 134361.	2.1	10
26	Voluntary exercise reduces plasma cortisol levels and improves transitory memory impairment in young and aged Octodon degus. Behavioural Brain Research, 2019, 373, 112066.	2.2	7
27	Local Gastrointestinal Injury Exacerbates Inflammation and Dopaminergic Cell Death in Parkinsonian Mice. Neurotoxicity Research, 2019, 35, 918-930.	2.7	9
28	Electrical stimulation or MK-801 in the inferior colliculus improve motor deficits in MPTP-treated mice. NeuroToxicology, 2018, 65, 38-43.	3.0	10
29	Vision-based gait impairment analysis for aided diagnosis. Medical and Biological Engineering and Computing, 2018, 56, 1553-1564.	2.8	36
30	Alteration of the PAC1 Receptor Expression in the Basal Ganglia of MPTP-Induced Parkinsonian Macaque Monkeys. Neurotoxicity Research, 2018, 33, 702-715.	2.7	17
31	Effect of NAC treatment and physical activity on neuroinflammation in subchronic Parkinsonism; is physical activity essential?. Journal of Neuroinflammation, 2018, 15, 328.	7.2	13
32	Unexpected Exacerbation of Neuroinflammatory Response After a Combined Therapy in Old Parkinsonian Mice. Frontiers in Cellular Neuroscience, 2018, 12, 451.	3.7	14
33	Involvement of the kynurenine pathway in the pathogenesis of Parkinson's disease. Progress in Neurobiology, 2017, 155, 76-95.	5.7	111
34	Multiple mechanisms of neurodegeneration and progression. Progress in Neurobiology, 2017, 155, 1.	5.7	15
35	The multifaceted role of metalloproteinases in physiological and pathological conditions in embryonic and adult brains. Progress in Neurobiology, 2017, 155, 36-56.	5.7	34
36	EEG-based Approach-Withdrawal index for the pleasantness evaluation during taste experience in realistic settings., 2017, 2017, 3228-3231.		20

#	Article	IF	Citations
37	A New Perspective for the Training Assessment: Machine Learning-Based Neurometric for Augmented User's Evaluation. Frontiers in Neuroscience, 2017, 11, 325.	2.8	36
38	EEG Frontal Asymmetry Related to Pleasantness of Olfactory Stimuli in Young Subjects. Springer Proceedings in Business and Economics, 2016, , 373-381.	0.3	25
39	An Update on the Role of Nitric Oxide in the Neurodegenerative Processes of Parkinson's Disease. Current Medicinal Chemistry, 2016, 23, 2666-2679.	2.4	51
40	Transcranial Magnetic Stimulation on Rodent Models. CNS and Neurological Disorders - Drug Targets, 2016, 15, 756-764.	1.4	6
41	Inflammation in Parkinsonââ,¬â,,¢s disease: role of glucocorticoids. Frontiers in Neuroanatomy, 2015, 9, 32.	1.7	115
42	Retinal aging in the diurnal Chilean rodent (Octodon degus): histological, ultrastructural and neurochemical alterations of the vertical information processing pathway. Frontiers in Cellular Neuroscience, 2015, 9, 126.	3.7	15
43	Transcranial magnetic stimulation and aging: Effects on spatial learning and memory after sleep deprivation in Octodon degus. Neurobiology of Learning and Memory, 2015, 125, 274-281.	1.9	10
44	Cognitive Impairment After Sleep Deprivation Rescued by Transcranial Magnetic Stimulation Application in Octodon degus. Neurotoxicity Research, 2015, 28, 361-371.	2.7	15
45	Metalloproteinase-9 contributes to inflammatory glia activation and nigro-striatal pathway degeneration in both mouse and monkey models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Brain Structure and Function, 2015, 220, 703-727.	2.3	58
46	Dyskinesia in Parkinson's disease: mechanisms and current nonâ€pharmacological interventions. Journal of Neurochemistry, 2014, 130, 472-489.	3.9	66
47	Functional role of Barrington's nucleus in the micturition reflex: Relevance in the surgical treatment of Parkinson's disease. Neuroscience, 2014, 266, 150-161.	2.3	12
48	Memantine prevents reference and working memory impairment caused by sleep deprivation in both young and aged Octodon degus. Neuropharmacology, 2014, 85, 206-214.	4.1	21
49	Alpha-Theta Effects Associated with Ageing during the Stroop Test. PLoS ONE, 2014, 9, e95657.	2.5	7
50	<i>Octodon degus</i> : A Model for the Cognitive Impairment Associated with <scp>A</scp> lzheimer's Disease. CNS Neuroscience and Therapeutics, 2013, 19, 643-648.	3.9	43
51	Critical evaluation of the anatomical location of the Barrington nucleus: Relevance for deep brain stimulation surgery of pedunculopontine tegmental nucleus. Neuroscience, 2013, 247, 351-363.	2.3	17
52	Potent and multiple regulatory actions of microglial glucocorticoid receptors during CNS inflammation. Cell Death and Differentiation, 2013, 20, 1546-1557.	11.2	88
53	Persistent phagocytic characteristics of microglia in the substantia nigra of long-term Parkinsonian macaques. Journal of Neuroimmunology, 2013, 261, 60-66.	2.3	35
54	Evidence of oligodendrogliosis in 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridine (MPTP)â€induced Parkinsonism. Neuropathology and Applied Neurobiology, 2013, 39, 132-143.	3.2	20

#	Article	lF	CITATIONS
55	Effects of pharmacological agents, sleep deprivation, hypoxia and transcranial magnetic stimulation on electroencephalographic rhythms in rodents: Towards translational challenge models for drug discovery in Alzheimer's disease. Clinical Neurophysiology, 2013, 124, 437-451.	1.5	21
56	Alterations in Energy Metabolism, Neuroprotection and Visual Signal Transduction in the Retina of Parkinsonian, MPTP-Treated Monkeys. PLoS ONE, 2013, 8, e74439.	2.5	30
57	ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Scientific Reports, 2012, 2, 809.	3.3	117
58	7-Nitroindazole down-regulates dopamine/DARPP-32 signaling in neostriatal neurons in a rat model of Parkinson's disease. Neuropharmacology, 2012, 63, 1258-1267.	4.1	29
59	Parkinson's Disease and Autophagy. Parkinson's Disease, 2012, 2012, 1-6.	1.1	21
60	Dopamine modulation affects the performance of parkinsonian patients in a precision motor task measured by an antropomorphic device. Human Movement Science, 2012, 31, 730-742.	1.4	3
61	CCL2-Expressing Astrocytes Mediate the Extravasation of T Lymphocytes in the Brain. Evidence from Patients with Glioma and Experimental Models In Vivo. PLoS ONE, 2012, 7, e30762.	2,5	37
62	Cognitive Rehabilitation in Parkinson's Disease: Evidence from Neuroimaging. Frontiers in Neurology, 2011, 2, 82.	2.4	89
63	The Involvement of Neuroinflammation and Kynurenine Pathway in Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-11.	1.1	64
64	Neuroprotective Role of Dopamine Agonists. Neurologist, 2011, 17, S54-S66.	0.7	21
65	Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6632-6637.	7.1	184
66	IFN- \hat{l}^3 signaling, with the synergistic contribution of TNF- $\hat{l}\pm$, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease. Cell Death and Disease, 2011, 2, e142-e142.	6. 3	212
67	Expression in the mammalian retina of parkin and UCH-L1, two components of the ubiquitin-proteasome system. Brain Research, 2010, 1352, 70-82.	2.2	42
68	No Lewy pathology in monkeys with over 10 years of severe MPTP Parkinsonism. Movement Disorders, 2009, 24, 1519-1523.	3.9	72
69	Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication. Journal of Neurochemistry, 2009, 110, 1321-1329.	3.9	47
70	MPTP administration increases plasma levels of acute phase proteins in non-human primates (Macaca) Tj ETQq(0 0 0 rgBT	/Overlock 10 T
71	Inflammatory Response in Parkinsonism. , 2009, , 245-252.		6
72	Increase of Secondary Processes of Microglial and Astroglial Cells After MPTP-Induced Degeneration in Substantia Nigra Pars Compacta of Non Human Primates., 2009,, 253-258.		7

#	Article	IF	CITATIONS
73	Infiltrating CTLs in Human Glioblastoma Establish Immunological Synapses with Tumorigenic Cells. American Journal of Pathology, 2009, 175, 786-798.	3.8	49
74	Cavernomas in children with brain tumors: a late complication of radiotherapy. Neurocirugia, 2008, 19, 50-54.	0.4	15
75	CD20, CD3, and CD40 Ligand Microclusters Segregate Three-Dimensionally In Vivo at B-Cell-T-Cell Immunological Synapses after Viral Immunity in Primate Brain. Journal of Virology, 2008, 82, 9978-9993.	3.4	17
76	Increased mRNA expression of cytochrome oxidase in dorsal raphe nucleus of depressive suicide victims. Neuropsychiatric Disease and Treatment, 2008, 4, 413.	2.2	6
77	Changes in the neuronal activity in the pedunculopontine nucleus in chronic MPTP-treated primates: an in situ hybridization study of cytochrome oxidase subunit I, choline acetyl transferase and substance P mRNA expression. Journal of Neural Transmission, 2007, 114, 319-326.	2.8	31
78	Metabolic activity of cerebellar and basal ganglia-thalamic neurons is reduced in parkinsonism. Brain, 2006, 130, 265-275.	7.6	66
79	Visceral signals reach visual cortex during slow wave sleep: study in monkeys. Acta Neurobiologiae Experimentalis, 2006, 66, 69-73.	0.7	15
80	Morphological impairments in retinal neurons of the scotopic visual pathway in a monkey model of Parkinson's disease. Journal of Comparative Neurology, 2005, 493, 261-273.	1.6	55
81	Ontogeny of tyrosine hydroxylase mRNA expression in mid―and forebrain: Neuromeric pattern and novel positive regions. Developmental Dynamics, 2005, 234, 709-717.	1.8	76
82	Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. Journal of Neural Transmission, 2005, 112, 1237-1248.	2.8	94
83	Increased plasma levels of TNF- \hat{l}_{\pm} but not of IL1- \hat{l}_{-}^2 in MPTP-treated monkeys one year after the MPTP administration. Parkinsonism and Related Disorders, 2005, 11, 435-439.	2.2	59
84	Modulatory Role of NK1 Receptors in the Basal Ganglia. Studies in NK1-/- Mice., 2005,, 151-159.		0
85	Blood vessels and Parkinsonism. Frontiers in Bioscience - Landmark, 2004, 9, 277.	3.0	34
86	Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia, 2004, 46, 402-409.	4.9	181
87	Measurement of motor disability in MPTP-treated macaques using a telemetry system for estimating circadian motor activity. Journal of Neuroscience Methods, 2004, 134, 59-64.	2.5	18
88	On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation. Neurobiology of Disease, 2004, 16, 468-477.	4.4	109
89	Parkinson's disease and inflammatory changes. Neurotoxicity Research, 2003, 5, 411-417.	2.7	72
90	Circadian Determinations of Cortisol, Prolactin and Melatonin in Chronic Methyl-Phenyl-Tetrahydropyridine-Treated Monkeys. Neuroendocrinology, 2003, 78, 118-128.	2.5	38

#	Article	IF	CITATIONS
91	Blood Vessels And Neurodegeneration In Parkinson's Disease. Advances in Behavioral Biology, 2002, , 341-347.	0.2	2
92	Functional anatomy of thalamus and basal ganglia. Child's Nervous System, 2002, 18, 386-404.	1.1	533
93	Anatomo-Chemical Organization of the Basal Ganglia Circuitry in the Normal and Parkinsonian States. Advances in Behavioral Biology, 2002, , 521-530.	0.2	О
94	Metabolic effects of nigrostriatal denervation in basal ganglia. Trends in Neurosciences, 2000, 23, S78-S85.	8.6	88
95	Nocturnal sleep structure and temperature slope in MPTP treated monkeys. Journal of Neural Transmission, 1999, 106, 1125-1134.	2.8	54
96	Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents., 1998, 7, 146-183.		384
97	[1251]EGF Binding in Basal Ganglia of Patients with Parkinson's Disease and Progressive Supranuclear Palsy and in MPTP-Treated Monkeys. Experimental Neurology, 1998, 154, 146-156.	4.1	7
98	Re-evaluation of the functional anatomy of the basal ganglia in normal and Parkinsonian states. Neuroscience, 1997, 76, 335-343.	2.3	262
99	Consequences of Nigrostriatal Denervation on the Functioning of the Basal Ganglia in Human and Nonhuman Primates: An <i>In Situ</i> Hybridization Study of Cytochrome Oxidase Subunit I mRNA. Journal of Neuroscience, 1997, 17, 765-773.	3.6	154
100	Regulation of metallothionein-III (GIF) mRNA in the brain of patients with Alzheimer disease is not impaired. Molecular and Chemical Neuropathology, 1997, 32, 101-121.	1.0	70
101	Expression of Bclâ \in 2 in Adult Human Brain Regions with Special Reference to Neurodegenerative Disorders. Journal of Neurochemistry, 1997, 69, 223-231.	3.9	67
102	Metabolic activity of the basal ganglia in parkinsonian syndromes in human and non-human primates: A cytochrome oxidase histochemistry study. Neuroscience, 1996, 71, 903-912.	2.3	104
103	Effects of I-DOPA-therapy on dopamine D2 receptor mRNA expression in the striatum of MPTP-intoxicated parkinsonian monkeys. Molecular Brain Research, 1996, 42, 149-155.	2.3	42
104	Subthalamotomy in parkinsonian monkeys Behavioural and biochemical analysis. Brain, 1996, 119, 1717-1727.	7.6	248
105	Consequence of nigrostriatal denervation and L-dopa therapy on the expression of glutamic acid decarboxylase messenger RNA in the pallidum. Neurology, 1996, 47, 219-224.	1.1	88
106	Effects of Nigrostriatal Denervation and L-Dopa Therapy on the GABAergic Neurons of the Striatum in MPTP-treated Monkeys and Parkinson's Disease: AnIn SituHybridization Study of GAD67mRNA. European Journal of Neuroscience, 1995, 7, 1199-1209.	2.6	59
107	Autoradiographic localization and density of [1251] ferrotransferrin binding sites in the basal ganglia of control subjects, patients with Parkinson's disease and MPTP-lesioned monkeys. Brain Research, 1995, 691, 115-124.	2.2	42
108	Striatal expression of substance P and methionin-enkephalin genes in patients with Parkinson's disease. Neuroscience Letters, 1995, 199, 220-224.	2.1	25

#	Article	IF	Citations
109	Effects of I-DOPA on preproenkephalin and preprotachykinin gene expression in the MPTP-treated monkey striatum. Neuroscience, 1995, 68, 1189-1198.	2.3	136
110	Chronic alcoholism decreases neuronal nuclear size in the human entorhinal cortex. Neuroscience Letters, 1995, 183, 71-74.	2.1	20
111	REVIEW. European Journal of Neuroscience, 1994, 6, 889-897.	2.6	87
112	MPTP-induced parkinsonism in primates: pattern of striatal dopamine loss following acute and chronic administration. Neuroscience Letters, 1994, 175, 121-125.	2.1	46
113	Subthalamotomy Improves MPTP-Induced Parkinsonism in Monkeys ¹ . Stereotactic and Functional Neurosurgery, 1994, 62, 98-102.	1.5	53
114	Immunocytochemical Quantification of Tyrosine Hydroxylase at a Cellular Level in the Mesencephalon of Control Subjects and Patients with Parkinson's and Alzheimer's Disease. Journal of Neurochemistry, 1993, 61, 1024-1034.	3.9	61
115	Differential vulnerability to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine of dopaminergic and cholinergic neurons in the monkey mesopontine tegmentum. Brain Research, 1993, 624, 281-285.	2.2	20
116	Does neuromelanin contribute to the vulnerability of catecholaminergic neurons in monkeys intoxicated with MPTP?. Neuroscience, 1993, 56, 499-511.	2.3	97
117	GM-1 ganglioside promotes the recovery of surviving midbrain dopaminergic neurons in MPTP-treated monkeys. Neuroscience, 1993, 56, 965-972.	2.3	53
118	In situ hybridization of GAD mRNA in monkey and human brain: quantification at both regional and cellular levels. Neuroscience Letters, 1993, 157, 57-61.	2.1	12
119	Behavioral tolerance to repeated apomorphine administration in parkinsonian monkeys. Journal of the Neurological Sciences, 1993, 114, 40-44.	0.6	24
120	Neuromelanin Accumulation with Age in Catecholaminergic Neurons from <i>Macaca fascicularis </i> Prainstem. Developmental Neuroscience, 1993, 15, 37-48.	2.0	28
121	Chronic MPTP treatment reduces substance P and met-enkephalin content in the basal ganglia of the marmoset. Brain Research, 1992, 585, 156-160.	2.2	25
122	Cortical projections from the laterodorsal and dorsal tegmental nuclei. A fluorescent retrograde tracing study in the rat. Neuroscience Letters, 1991, 123, 144-147.	2.1	15
123	Cortically projecting cells in the periaqueductal gray matter of the rat. A retrograde fluorescent tracer study. Brain Research, 1991, 543, 201-212.	2.2	29
124	Extensive loss of brain dopamine and serotonin induced by chronic administration of MPTP in the marmoset. Brain Research, 1991, 567, 127-132.	2.2	94