Yasuhiko Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9551585/publications.pdf

Version: 2024-02-01

94 papers

1,537 citations

279798 23 h-index 34 g-index

94 all docs 94
docs citations

94 times ranked 940 citing authors

#	Article	IF	CITATIONS
1	Dynamics and Thermodynamics of Dimerization of Parallel G-Quadruplexed DNA Formed from d(TTAGn) (n= 3â^'5). Journal of the American Chemical Society, 2005, 127, 9980-9981.	13.7	81
2	Proton NMR characterization of metastable and equilibrium heme orientational heterogeneity in reconstituted and native human hemoglobin. Biochemistry, 1985, 24, 3826-3831.	2.5	79
3	Formation of a Complex of 5,10,15,20-Tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphyrin with G-Quadruplex DNA. Biochemistry, 2006, 45, 6765-6772.	2.5	79
4	Proton NMR study of dynamics and thermodynamics of heme rotational disorder in native and reconstituted hemoglobin A. Biochemistry, 1986, 25, 5288-5297.	2.5	60
5	Heme methyl hyperfine shift pattern as a probe for determining the orientation of the functionally relevant proximal histidyl imidazole with respect to the heme in hemoproteins. FEBS Letters, 1990, 264, 112-116.	2.8	55
6	Interaction between the Heme and a G-Quartet in a Heme–DNA Complex. Inorganic Chemistry, 2012, 51, 8168-8176.	4.0	53
7	Effect of Heme Modification on Oxygen Affinity of Myoglobin and Equilibrium of the Acidâ^'Alkaline Transition in Metmyoglobin. Journal of the American Chemical Society, 2010, 132, 6091-6098.	13.7	41
8	Binding of 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphyrin to an AT-Rich Region of a Duplex DNA. Biophysical Chemistry, 2005, 113, 53-59.	2.8	35
9	Characterization of the Interaction between Heme and a Parallel G-Quadruplex DNA Formed from d(TTAGGGT). Bulletin of the Chemical Society of Japan, 2015, 88, 644-652.	3.2	34
10	Coordination complex between haemin and parallel-quadruplexed d(TTAGGG)Electronic supplementary information (ESI) available: CD and NMR spectra. See http://www.rsc.org/suppdata/cc/b3/b303643j/. Chemical Communications, 2003, , 1708.	4.1	32
11	Effect of Reversed Heme Orientation on Circular Dichroism and Cooperative Oxygen Binding of Human Adult Hemoglobin. Biochemistry, 2008, 47, 517-525.	2.5	32
12	Characterization of Heme–DNA Complexes Composed of Some Chemically Modified Hemes and Parallel G-Quadruplex DNAs. Biochemistry, 2015, 54, 7168-7177.	2.5	32
13	Molecular mechanism for ligand stabilization in the mollusc myoglobin possessing the distal Val residue. Journal of Molecular Biology, 1992, 228, 343-346.	4.2	30
14	Nmr Study Of Active Sites In Paramagnetic Haemoproteins. Annual Reports on NMR Spectroscopy, 1998, 36, 1-77.	1.5	30
15	Relationship between Redox Function and Protein Stability of Cytochromesc. Journal of the American Chemical Society, 2003, 125, 13650-13651.	13.7	29
16	Structural characterization of a carbon monoxide adduct of a heme–DNA complex. Journal of Biological Inorganic Chemistry, 2012, 17, 437-445.	2.6	29
17	Characterization of Catalytic Activities and Heme Coordination Structures of Heme–DNA Complexes Composed of Some Chemically Modified Hemes and an All Parallel-Stranded Tetrameric G-Quadruplex DNA Formed from d(TTAGGG). Biochemistry, 2018, 57, 5930-5937.	2.5	28
18	Control of the Redox Potential of Pseudomonas aeruginosa Cytochrome c551 through the Feâ^Met Coordination Bond Strength and pKa of a Buried Heme Propionic Acid Side Chain. Biochemistry, 2005, 44, 5488-5494.	2.5	26

#	Article	IF	CITATIONS
19	Structures and Catalytic Activities of Complexes between Heme and All Parallel-Stranded Monomeric G-Quadruplex DNAs. Biochemistry, 2018, 57, 5938-5948.	2.5	26
20	Influence of Amino Acid Side Chain Packing on Feâ^'Methionine Coordination in Thermostable Cytochrome c. Journal of the American Chemical Society, 2002, 124, 11574-11575.	13.7	25
21	Exogenous Ligand Binding Property of a Heme–DNA Coordination Complex. Chemistry Letters, 2006, 35, 126-127.	1.3	25
22	A 1H-NMR study of electronic structure of the active site of Galeorhinus japonicus metmyoglobin. FEBS Journal, 1990, 192, 225-229.	0.2	24
23	Determination of the functionally important heme peripheral vinyl group orientation in paramagnetic hemoprotein by 2D NMR. FEBS Letters, 1989, 247, 263-267.	2.8	23
24	19F NMR Characterization of the Thermodynamics and Dynamics of the Acidâ^'Alkaline Transition in a Reconstituted Sperm Whale Metmyoglobin. Journal of the American Chemical Society, 2005, 127, 4146-4147.	13.7	22
25	Relationship between Oxygen Affinity and Autoxidation of Myoglobin. Inorganic Chemistry, 2012, 51, 11955-11960.	4.0	21
26	1H-NMR investigation of the influence of the heme orientation on functional properties of myoglobin. BBA - Proteins and Proteomics, 1998, 1388, 349-362.	2.1	19
27	Effects of axial methionine coordination on the in-plane asymmetry of the heme electronic structure of cytochrome c. Journal of Biological Inorganic Chemistry, 2004, 9, 733-742.	2.6	19
28	Further Enhancement of the Thermostability ofHydrogenobacter thermophilusCytochromec552â€. Biochemistry, 2006, 45, 11005-11011.	2.5	19
29	1H-NMR Comparative Study of the Active Site in Shark (Galeorhinus japonicus), Horse, and Sperm Whale Deoxy Myoglobins. Journal of Biochemistry, 1992, 112, 414-420.	1.7	18
30	NMR Characterization of Segment Sequence in Polyster-Polyether Copolymers Polymer Journal, 1992, 24, 1345-1349.	2.7	18
31	NMR investigation of the heme electronic structure in deoxymyoglobin possessing a fluorinated heme. Journal of Biological Inorganic Chemistry, 2004, 9, 152-160.	2.6	18
32	Electron transfer from cytochrome c to cupredoxins. Journal of Biological Inorganic Chemistry, 2009, 14, 821-828.	2.6	18
33	Kinetic characterization of the acid-alkaline transition inDolabella auriculariaferric myoglobin using 1H-NMR saturation transfer experiments. FEBS Letters, 1992, 310, 71-74.	2.8	17
34	Identification of Intermediates in Peroxidase Catalytic Cycle of a DNAzyme Possessing Heme. Bulletin of the Chemical Society of Japan, 2019, 92, 1729-1736.	3.2	17
35	NMR study of Galeorhinus japonicus myoglobin. 1H-NMR evidence for a structural alteration on the active site of G. japonicus myoglobin upon azide ion binding. FEBS Journal, 1991, 198, 285-291.	0.2	16
36	NMR study of Galeorhinus japonicus myoglobin. 1H-NMR study of molecular structure of the heme cavity. FEBS Journal, 1991, 198, 299-306.	0.2	15

#	Article	IF	CITATIONS
37	Relationship between the Electron Density of the Heme Fe Atom and the Vibrational Frequencies of the Fe-Bound Carbon Monoxide in Myoglobin. Inorganic Chemistry, 2013, 52, 3349-3355.	4.0	15
38	Characterization of the interaction between heme and a parallel G-quadruplex DNA formed from d(TTGAGG). Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1264-1270.	2.4	15
39	Role of a Highly Conserved Electrostatic Interaction on the Surface of Cytochrome c in Control of the Redox Function. Biochemistry, 2010, 49, 42-48.	2.5	14
40	19F NMR Study of the Heme Orientation and Electronic Structure in a Myoglobin Reconstituted with a Ring-Fluorinated Heme. Bulletin of the Chemical Society of Japan, 2000, 73, 2309-2316.	3.2	13
41	Electronic Control of Discrimination between O2 and CO in Myoglobin Lacking the Distal Histidine Residue. Inorganic Chemistry, 2014, 53, 1091-1099.	4.0	13
42	1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorhinus japonicus. FEBS Journal, 1990, 189, 567-573.	0.2	12
43	Paramagnetic1H NMR saturation transfer study of ligand exchange in iron(III) myoglobins. Magnetic Resonance in Chemistry, 1993, 31, S8-S16.	1.9	12
44	Structural characterization of imidazole adducts of heme-DNA complexes. Journal of Porphyrins and Phthalocyanines, 2014, 18, 741-751.	0.8	12
45	Structural and functional characterization of complexes between heme and dimeric parallel G-quadruplex DNAs. Journal of Inorganic Biochemistry, 2021, 216, 111336.	3.5	12
46	Characterization of heme coordination structure in heme-DNA complex possessing gaseous molecule as an exogenous ligand. Nucleic Acids Symposium Series, 2009, 53, 241-242.	0.3	11
47	Electronic Control of Ligand-Binding Preference of a Myoglobin Mutant. Inorganic Chemistry, 2014, 53, 9156-9165.	4.0	11
48	Characterization of Structure and Catalytic Activity of a Complex between Heme and an All Parallel-Stranded Tetrameric G-Quadruplex Formed from DNA/RNA Chimera Sequence d(TTA)r(GGG)dT. Bulletin of the Chemical Society of Japan, 2020, 93, 621-629.	3.2	11
49	1H-NMR Study of Inter-Segmental Hydrogen Bonds in Sperm Whale and Horse Apomyoglobins. FEBS Journal, 1997, 243, 292-298.	0.2	10
50	A novel heme-DNA coordination complex and its stability. Nucleic Acids Symposium Series, 2002, 2, 285-286.	0.3	10
51	19F NMR Study on the Heme Electronic Structure in Oxy and Carbonmonoxy Reconstituted Myoglobins. Bulletin of the Chemical Society of Japan, 2004, 77, 1485-1486.	3.2	10
52	Local Conformational Transition of <i>Hydrogenobacter thermophilus</i> Cytochrome <i>c</i> Siochemistry, 2007, 46, 9215-9224.	2.5	10
53	NMR study of dynamics and thermodynamics of acid–alkaline transition in ferric hemoglobin of a midge larva (Tokunagayusurika akamusi). BBA - Proteins and Proteomics, 1998, 1385, 89-100.	2.1	9
54	1H-NMR study of dynamics and thermodynamics of Clâ ⁻ binding to ferric hemoglobin of a midge larva (Tokunagayusurika akamusi). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1652, 136-143.	2.3	9

#	Article	IF	CITATIONS
55	Specific Binding of an Anionic Phthalocyanine Derivative to G-Quadruplex DNAs. Chemistry Letters, 2020, 49, 530-533.	1.3	9
56	Multimodal Multiphoton Imaging of the Lipid Bilayer by Dye-Based Sum-Frequency Generation and Coherent Anti-Stokes Raman Scattering. Analytical Chemistry, 2020, 92, 5656-5660.	6.5	9
57	Effects of Heme Electronic Structure and Local Heme Environment on Catalytic Activity of a Peroxidase-Mimicking Heme–DNAzyme. Inorganic Chemistry, 2021, 60, 11206-11213.	4.0	9
58	Heme orientational disorder in human adult hemoglobin reconstituted with a ring fluorinated heme and its functional consequences. Biochemical and Biophysical Research Communications, 2007, 354, 681-685.	2.1	8
59	Enhancement of the Thermostability of <i>Hydrogenobacter thermophilus</i> Cytochrome <i>c</i> ₅₅₂ through Introduction of an Extra Methylene Group into Its Hydrophobic Protein Interior. Biochemistry, 2011, 50, 3161-3169.	2.5	8
60	NMR Detection and Characterization of I-quartets in Parallel DNA Quadruplexes. Chemistry Letters, 2015, 44, 1107-1109.	1.3	8
61	Effects of Heme Electronic Structure and Distal Polar Interaction on Functional and Vibrational Properties of Myoglobin. Inorganic Chemistry, 2016, 55, 1613-1622.	4.0	8
62	Characterization of Heme Orientational Disorder in a Myoglobin Reconstituted with a Trifluoromethyl-Group-Substituted Heme Cofactor. Biochemistry, 2017, 56, 4500-4508.	2.5	8
63	Quantitative Mapping of Metal-Centered Dipolar Field in Hemin Dicyano Complex by Solution NMR. Bulletin of the Chemical Society of Japan, 1989, 62, 1771-1776.	3.2	7
64	A1H NMR comparative study of human adult and fetal hemoglobins. FEBS Letters, 1998, 424, 169-172.	2.8	7
65	Influence of a Single Amide Group on the Redox Function ofPseudomonas aeruginosaCytochromec551. Chemistry Letters, 2006, 35, 528-529.	1.3	7
66	A Nuclear Resonance Vibrational Spectroscopic Study of Oxy Myoglobins Reconstituted with Chemically Modified Heme Cofactors: Insights into the Fe–O ₂ Bonding and Internal Dynamics of the Protein. Biochemistry, 2018, 57, 6649-6652.	2.5	7
67	Stepwise binding of a cationic phthalocyanine derivative to an all parallel-stranded tetrameric G-quadruplex DNA. Journal of Inorganic Biochemistry, 2020, 213, 111270.	3. 5	7
68	Hydrogen bonding interaction of the amide group of Asn and Gln at distal E7 of bovine myoglobin with bound-ligand and its functional consequences. BBA - Proteins and Proteomics, 1999, 1433, 27-44.	2.1	6
69	Characterization of Non-Native Heme Coordination Structures Emerging upon Guanidine Hydrochloric Acid-Induced Unfolding ofPseudomonas aeruginosaFerricytochromec551. Bulletin of the Chemical Society of Japan, 2005, 78, 2019-2025.	3.2	6
70	1H NMR Study of the Heme Molecular Structure in Sperm Whale Met-Aquo and Met-Imidazole Myoglobins. Bulletin of the Chemical Society of Japan, 1996, 69, 2947-2953.	3.2	5
71	Characterization of Ground State Electron Configurations of High-Spin Quintet Ferrous Heme Iron in Deoxy Myoglobin Reconstituted with Trifluoromethyl Group-Substituted Heme Cofactors. Inorganic Chemistry, 2016, 55, 12128-12136.	4.0	5
72	Synergistic Effect of Distal Polar Interactions in Myoglobin and Their Structural Consequences. Inorganic Chemistry, 2018, 57, 14269-14279.	4.0	5

#	Article	IF	CITATIONS
73	A cationic copolymer as a cocatalyst for a peroxidase-mimicking heme-DNAzyme. Biomaterials Science, 2021, 9, 6142-6152.	5.4	5
74	Nature of a H ₂ O Molecule Confined in the Hydrophobic Interface between the Heme and G-Quartet Planes in a Heme–DNA Complex. Biochemistry, 2022, 61, 523-534.	2.5	5
75	Structural characterization of non-native states of sperm whale myoglobin in aqueous ethanol or 2,2,2-trifluoroethanol media. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1601, 75-84.	2.3	4
76	Fine tuning of the redox function of Pseudomonas aeruginosa cytochrome c551 through structural properties of a polypeptide loop bearing an axial Met residue. Journal of Inorganic Biochemistry, 2012, 108, 182-187.	3.5	4
77	Monitoring the morphological evolution of giant vesicles by azo dye-based sum-frequency generation (SFG) microscopy. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110716.	5.0	4
78	A 1H NMR comparative study of the structure of the critical packing interfaces between helix and non-helical region in various ligation states of sperm whale myoglobin. BBA - Proteins and Proteomics, 1997, 1343, 59-66.	2.1	3
79	Characterization of N-terminal amino group–heme ligation emerging upon guanidine hydrochloric acid induced unfolding of Hydrogenobacter thermophilus ferricytochrome c 552. Journal of Biological Inorganic Chemistry, 2007, 13, 25-34.	2.6	3
80	Characterization of the acid–alkaline transition in the individual subunits of human adult and foetal methaemoglobins. Journal of Biochemistry, 2010, 148, 217-229.	1.7	3
81	Field-dependent 19F NMR study of sperm whale myoglobin reconstituted with a ring-fluorinated heme. Polymer Journal, 2012, 44, 907-912.	2.7	3
82	Heme Orientation of Cavity Mutant Hemoglobins (His F8Ââ†'ÂGly) in Either α or β Subunits: Circular Dichroism, ¹ H NMR, and Resonance Raman Studies. Chirality, 2016, 28, 585-592.	2.6	3
83	Molecular Recognition of G-quadruplex DNA by Pheophorbide <i>a</i> . Chemistry Letters, 2021, 50, 1278-1281.	1.3	3
84	Effect of the Electron Density of the Heme Fe Atom on the Nature of Fe–O2 Bonding in Oxy Myoglobin. Inorganic Chemistry, 2021, 60, 1021-1027.	4.0	3
85	NMR Studies of b-Type Haemoproteins Reconstituted with a Ring-Fluorinated Haem. Annual Reports on NMR Spectroscopy, 2006, , 51-98.	1.5	2
86	Stability of the Heme Feâ^'N-Terminal Amino Group Coordination Bond in Denatured Cytochrome <i>c</i> . Inorganic Chemistry, 2009, 48, 331-338.	4.0	2
87	Inversion of the Stereochemistry around the Sulfur Atom of the Axial Methionine Side Chain through Alteration of Amino Acid Side Chain Packing in Hydrogenobacter thermophilus Cytochrome <i>c</i> ₅₅₂ and Its Functional Consequences. Biochemistry, 2013, 52, 4800-4809.	2.5	2
88	Effect of the Electron Density of the Heme Fe Atom on the Fe–Histidine Coordination Bond in Deoxy Myoglobin. Bulletin of the Chemical Society of Japan, 2014, 87, 905-911.	3.2	2
89	Structural Determination of 4-Vinylcyclohexene Oxide Using 2D INADEQUATE NMR Spectroscopy and MNDO Calculation. Polymer Journal, 1990, 22, 719-723.	2.7	1
90	1H NMR study of the effect of heme insertion on the folding of apomyoglobin. Journal of Molecular Structure, 2002, 602-603, 133-144.	3.6	1

#	Article	IF	CITATIONS
91	Control of the Stability of <i>Hydrogenobacter Thermophilus</i> Cytochrome <i>c</i> ₅₅₂ through Alteration of the Basicity of the N-Terminal Amino Group of the Polypeptide Chain. Inorganic Chemistry, 2010, 49, 10840-10846.	4.0	1
92	STRUCTURAL DETERMINATION OF CYCLOALIPHATIC EPOXY MONOMERS BY TWO-DIMENSIONAL NMR SPECTROSCOPY AND QUANTUM CHEMICAL CALCULATION. Analytical Sciences, 1991, 7, 425-428.	1.6	0
93	Novel Functions of π-Electron Systems in a Heme-DNA Complex. , 2015, , 731-750.		0
94	Dimerization of Parallel G-Quadruplex DNA Formed from TTAGGG and Interaction between G-Quadruplex DNA and Porphyrin Derivatives. Seibutsu Butsuri, 2007, 47, 023-028.	0.1	0