

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9551438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developing better ceramic membranes for water and wastewater Treatment: Where microstructure integrates with chemistry and functionalities. Chemical Engineering Journal, 2022, 428, 130456.	12.7	49
2	Effect of surface-patterned topographies of ceramic membranes on the filtration of activated sludge and their interaction with different particle sizes. Journal of Membrane Science, 2022, 645, 120125.	8.2	13
3	Low-temperature sintering of silicon carbide membrane supports from disks to single- and 19-channel tubes. Journal of the European Ceramic Society, 2022, 42, 2597-2608.	5.7	18
4	Silicon carbide microfiltration membranes for oil-water separation: Pore structure-dependent wettability matters. Water Research, 2022, 216, 118270.	11.3	36
5	Hierarchically porous interlayer for highly permeable and fouling-resistant ceramic membranes in water treatment. Separation and Purification Technology, 2022, 293, 121092.	7.9	10
6	3D spray-coated gradient profile ceramic membranes enables improved filtration performance in aerobic submerged membrane bioreactor. Water Research, 2022, 220, 118661.	11.3	4
7	Spatially confined growth of carbon nanotubes in the pore channels of microporous ceramic supports with improved filtration efficiency. Nanoscale, 2022, 14, 10091-10100.	5.6	5
8	Melded ceramic membranes: A novel fabrication method for ultrathin alumina membranes of high performance. Journal of the American Ceramic Society, 2022, 105, 6554-6569.	3.8	3
9	Ultrathin TiO2 microfiltration membranes supported on a holey intermediate layer to raise filtration performance. Journal of the European Ceramic Society, 2021, 41, 1622-1628.	5.7	11
10	Overcoming the Trade-off between Water Permeation and Mechanical Strength of Ceramic Membrane Supports by Interfacial Engineering. ACS Applied Materials & Interfaces, 2021, 13, 29199-29211.	8.0	26
11	Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules, 2021, 26, 3331.	3.8	26
12	Black Phosphorus@Ti ₃ C ₂ T _{<i>x</i>} MXene Composites with Engineered Chemical Bonds for Commercial-Level Capacitive Energy Storage. ACS Nano, 2021, 15, 12975-12987.	14.6	70
13	Chemical-grafting of graphene oxide quantum dots (GOQDs) onto ceramic microfiltration membranes for enhanced water permeability and anti-organic fouling potential. Applied Surface Science, 2020, 502, 144128.	6.1	50
14	Effect of gradient profile in ceramic membranes on filtration characteristics: Implications for membrane development. Journal of Membrane Science, 2020, 595, 117576.	8.2	42
15	Low-loss and temperature-stable negative permittivity in La0.5Sr0.5MnO3 ceramics. Journal of the European Ceramic Society, 2020, 40, 1917-1921.	5.7	38
16	Design and analysis of negative permittivity behaviors in barium titanate/nickel metacomposites. Acta Materialia, 2020, 185, 412-419.	7.9	154
17	Epsilon-negative behavior of BaTiO3/Ag metacomposites prepared by an in situ synthesis. Ceramics International, 2020, 46, 9342-9346.	4.8	28
18	Permittivity transition from positive to negative in acrylic polyurethane-aluminum composites. Composites Science and Technology, 2020, 188, 107969.	7.8	78

Qilin Gu

#	Article	IF	CITATIONS
19	Dendriteâ€Free Potassium Metal Anodes in a Carbonate Electrolyte. Advanced Materials, 2020, 32, e1906735.	21.0	107
20	Highly permeable Al 2 O 3 microfiltration membranes with holey interior structure achieved through sacrificial C particles. Journal of the American Ceramic Society, 2020, 103, 3361-3372.	3.8	11
21	Hydrogenated TiO2 membrane with photocatalytically enhanced anti-fouling for ultrafiltration of surface water. Applied Catalysis B: Environmental, 2020, 264, 118528.	20.2	37
22	Alumina double-layered ultrafiltration membranes with enhanced water flux. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124324.	4.7	9
23	Interfacial diffusion assisted chemical deposition (ID-CD) for confined surface modification of alumina microfiltration membranes toward high-flux and anti-fouling. Separation and Purification Technology, 2020, 235, 116177.	7.9	27
24	Surface engineered alumina microfiltration membranes based on rationally constructed core-shell particles. Journal of the European Ceramic Society, 2020, 40, 5951-5958.	5.7	20
25	Potassium Batteries: Dendriteâ€Free Potassium Metal Anodes in a Carbonate Electrolyte (Adv. Mater.) Tj ETQq1 1	0.784314 21.0	rgBT /Overl
26	Epsilon-negative BaTiO3/Cu composites with high thermal conductivity and yet low electrical conductivity. Journal of Materiomics, 2020, 6, 145-151.	5.7	58
27	A self-cleaning zwitterionic nanofibrous membrane for highly efficient oil-in-water separation. Science of the Total Environment, 2020, 729, 138876.	8.0	40
28	3D-printed surface-patterned ceramic membrane with enhanced performance in crossflow filtration. Journal of Membrane Science, 2020, 606, 118138.	8.2	53
29	Metal–Organic Frameworks (MOFs)-boosted filtration membrane technology for water sustainability. APL Materials, 2020, 8, .	5.1	54
30	CuCo ₂ S ₄ Nanosheets@Nâ€Doped Carbon Nanofibers by Sulfurization at Room Temperature as Bifunctional Electrocatalysts in Flexible Quasiâ€Solidâ€State Zn–Air Batteries. Advanced Science, 2019, 6, 1900628.	11.2	123
31	Heterogeneous ZIF-L membranes with improved hydrophilicity and anti-bacterial adhesion for potential application in water treatment. RSC Advances, 2019, 9, 1591-1601.	3.6	51
32	Ceramic-based membranes for water and wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123513.	4.7	179
33	Nanowires versus nanosheets – Effects of NiCo2O4 nanostructures on ceramic membrane permeability and fouling potential. Separation and Purification Technology, 2019, 215, 644-651.	7.9	13
34	Rational Design of Holey 2D Nonlayered Transition Metal Carbide/Nitride Heterostructure Nanosheets for Highly Efficient Water Oxidation. Advanced Energy Materials, 2019, 9, 1803768.	19.5	204
35	Hierarchical Microâ€Nano Sheet Arrays of Nickel–Cobalt Double Hydroxides for Highâ€Rate Ni–Zn Batteries. Advanced Science, 2019, 6, 1802002.	11.2	202
36	Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate. Scientific Reports, 2017, 7, 42274.	3.3	89

Qilin Gu

#	Article	IF	CITATIONS
37	Revealing the hydrothermal crystallization mechanism of ilmenite-type sodium niobate microplates: the roles of potassium ions. CrystEngComm, 2017, 19, 5966-5972.	2.6	6
38	Elucidating the effects of high temperature mixing method under hydrothermal condition (HTMM) on grain refinements and assembling structures. Powder Technology, 2017, 305, 440-446.	4.2	0
39	Low-temperature sintering and enhanced dielectric properties of alkali niobate ceramics prepared from solvothermally synthesized nanopowders. Ceramics International, 2017, 43, 1135-1144.	4.8	18
40	A metastable cubic phase of sodium niobate nanoparticles stabilized by chemically bonded solvent molecules. Physical Chemistry Chemical Physics, 2016, 18, 33171-33179.	2.8	16
41	Improved sintering activity and piezoelectric properties of PZT ceramics from hydrothermally synthesized powders with Pb excess. Journal of Materials Science: Materials in Electronics, 2016, 27, 8573-8579.	2.2	13
42	Effects of surfactant and reaction time on the formation and photocatalytic performance of Cu2S thin films grown in situ on Cu foil by hydrothermal method. Journal of Alloys and Compounds, 2016, 685, 266-271.	5.5	13
43	Bundle-like α′-NaV ₂ O ₅ mesocrystals: from synthesis, growth mechanism to analysis of Na-ion intercalation/deintercalation abilities. Nanoscale, 2016, 8, 1975-1985.	5.6	30
44	Stabilized temperature-dependent dielectric properties of Dy-doped BaTiO 3 ceramics derived from sol-hydrothermally synthesized nanopowders. Ceramics International, 2016, 42, 3170-3176.	4.8	36
45	Solvothermal Synthesis and Formation Mechanism of Potassium Sodium Niobate Mesocrystals Under Low Alkaline Conditions. Journal of Nanoscience and Nanotechnology, 2015, 15, 4934-4940.	0.9	6
46	Microwave-assisted sol–hydrothermal synthesis of tetragonal barium titanate nanoparticles with hollow morphologies. Journal of Materials Science: Materials in Electronics, 2015, 26, 1597-1601.	2.2	12
47	Modified Solvothermal Strategy for Straightforward Synthesis of Cubic NaNbO ₃ Nanowires with Enhanced Photocatalytic H ₂ Evolution. Journal of Physical Chemistry C, 2015, 119, 25956-25964.	3.1	48
48	Low-temperature solid-state synthesis and optical properties of ZnO/CdS nanocomposites. Journal of Alloys and Compounds, 2015, 618, 67-72.	5.5	25
49	Oneâ€Step Surfactantâ€Free Hydrothermal Synthesis of Platelike Sodium Niobate Template Powders. Journal of the American Ceramic Society, 2014, 97, 3360-3362.	3.8	12
50	Rod-like NaNbO ₃ : mechanisms for stable solvothermal synthesis, temperature-mediated phase transitions and morphological evolution. RSC Advances, 2014, 4, 15104-15110.	3.6	16
51	Hydrothermally synthesized barium titanate nanostructures from K2Ti4O9 precursors: Morphology evolution and its growth mechanism. Materials Research Bulletin, 2014, 57, 162-169.	5.2	30
52	Ultra-long VO2 (A) nanorods using the high-temperature mixing method under hydrothermal conditions: synthesis, evolution and thermochromic properties. CrystEngComm, 2013, 15, 2753.	2.6	58
53	Large magnetoelectric effect and resonance frequency controllable characteristics in Ni–lead zirconium titanate–Ni cylindrical layered composites. Journal of Alloys and Compounds, 2011, 509, 5163-5166.	5.5	36