James Brownjohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9549255/publications.pdf

Version: 2024-02-01

38742 43889 9,334 193 50 91 citations h-index g-index papers 194 194 194 4279 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Damping estimation using free decays response in short telecom structures. Advances in Structural Engineering, 2022, 25, 212-228.	2.4	O
2	Uncertainty quantification in Bayesian operational modal analysis with multiple modes and multiple setups. Mechanical Systems and Signal Processing, 2022, 164, 108205.	8.0	5
3	Fast computation of uncertainty lower bounds for state-space model-based operational modal analysis. Mechanical Systems and Signal Processing, 2022, 169, 108759.	8.0	3
4	Identifying modal properties of trees with Bayesian inference. Agricultural and Forest Meteorology, 2022, 316, 108804.	4.8	7
5	Three decades of statistical pattern recognition paradigm for SHM of bridges. Structural Health Monitoring, 2022, 21, 3018-3054.	7.5	66
6	Measuring configuration of multi-setup ambient vibration test. Mechanical Systems and Signal Processing, 2022, 175, 109153.	8.0	2
7	Field measurement and wind tunnel experimental investigation of a supertall building with closely spaced modes under typhoon Mangkhut. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 226, 105033.	3.9	10
8	Understanding and managing identification uncertainty of close modes in operational modal analysis. Mechanical Systems and Signal Processing, 2021, 147, 107018.	8.0	42
9	Achievable precision of close modes in operational modal analysis: Wide band theory. Mechanical Systems and Signal Processing, 2021, 147, 107016.	8.0	4
10	Bayesian operational modal analysis with multiple setups and multiple (possibly close) modes. Mechanical Systems and Signal Processing, 2021, 150, 107261.	8.0	21
11	Asymptotic identification uncertainty of well-separated modes in operational modal analysis with multiple setups. Mechanical Systems and Signal Processing, 2021, 152, 107382.	8.0	9
12	Identifying damage on a bridge using rotation-based Bridge Weigh-In-Motion. Journal of Civil Structural Health Monitoring, 2021, 11, 175-188.	3.9	25
13	Influence of the Spatial Pressure Distribution of Breaking Wave Loading on the Dynamic Response of Wolf Rock Lighthouse. Journal of Marine Science and Engineering, 2021, 9, 55.	2.6	2
14	Vibration investigation for telecom structures with smartphone camera: case studies. Journal of Civil Structural Health Monitoring, 2021, 11, 757-766.	3.9	9
15	Ambient vibration testing and operational modal analysis of monopole telecoms structures. Journal of Civil Structural Health Monitoring, 2021, 11, 1077.	3.9	5
16	An accurate and distraction-free vision-based structural displacement measurement method integrating Siamese network based tracker and correlation-based template matching. Measurement: Journal of the International Measurement Confederation, 2021, 179, 109506.	5.0	38
17	A Bayesian inverse dynamic approach for impulsive wave loading reconstruction: Theory, laboratory and field application. Coastal Engineering, 2021, 168, 103920.	4.0	4
18	A precise time-integration linear vehicle-bridge interaction method and dynamic sensitivity analysis. Structures, 2021, 33, 4596-4603.	3.6	4

#	Article	IF	CITATIONS
19	Performance of a TMD to Mitigate Wind-Induced Interference Effects between Two Industrial Chimneys. Actuators, 2021, 10, 12.	2.3	3
20	Bridge damage detection using rotation measurements $\hat{a} \in \text{``Experimental validation. Mechanical Systems and Signal Processing, 2020, 135, 106380.}$	8.0	65
21	Identifying damage in a bridge by analysing rotation response to a moving load. Structure and Infrastructure Engineering, 2020, 16, 1050-1065.	3.7	22
22	Bayesian data driven model for uncertain modal properties identified from operational modal analysis. Mechanical Systems and Signal Processing, 2020, 136, 106511.	8.0	17
23	Structural modal testing using a human actuator. Engineering Structures, 2020, 221, 111113.	5. 3	10
24	Tracking bridge tilt behaviour using sensor fusion techniques. Journal of Civil Structural Health Monitoring, 2020, 10, 543-555.	3.9	19
25	Enhanced sparse component analysis for operational modal identification of real-life bridge structures. Mechanical Systems and Signal Processing, 2019, 116, 585-605.	8.0	35
26	Wolf Rock lighthouse: past developments and future survivability under wave loading. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190027.	3.4	8
27	Environmental loading of heritage structures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190276.	3.4	2
28	An expectation-maximization algorithm for Bayesian operational modal analysis with multiple (possibly close) modes. Mechanical Systems and Signal Processing, 2019, 132, 490-511.	8.0	34
29	Boundary condition focused finite element model updating for bridges. Engineering Structures, 2019, 198, 109514.	5.3	14
30	Asymptotic identification uncertainty of close modes in Bayesian operational modal analysis. Mechanical Systems and Signal Processing, 2019, 133, 106273.	8.0	14
31	Bayesian operational modal analysis of offshore rock lighthouses: Close modes, alignment, symmetry and uncertainty. Mechanical Systems and Signal Processing, 2019, 133, 106306.	8.0	20
32	Survivability assessment of fastnet lighthouse. Coastal Engineering, 2019, 150, 18-38.	4.0	10
33	Modular Bayesian damage detection for complex civil infrastructure. Journal of Civil Structural Health Monitoring, 2019, 9, 201-215.	3.9	13
34	An Estimation of Pedestrian Action on Footbridges Using Computer Vision Approaches. Frontiers in Built Environment, 2019, 5, .	2.3	8
35	Instrument noise calibration with arbitrary sensor orientations. Mechanical Systems and Signal Processing, 2019, 117, 879-892.	8.0	5
36	Bayesian structural identification of a long suspension bridge considering temperature and traffic load effects. Structural Health Monitoring, 2019, 18, 1310-1323.	7.5	32

#	Article	IF	CITATIONS
37	Development and field testing of a vision-based displacement system using a low cost wireless action camera. Mechanical Systems and Signal Processing, 2019, 121, 343-358.	8.0	95
38	Bayesian operational modal analysis with buried modes. Mechanical Systems and Signal Processing, 2019, 121, 246-263.	8.0	13
39	Accurate Deformation Monitoring on Bridge Structures Using a Cost-Effective Sensing System Combined with a Camera and Accelerometers: Case Study. Journal of Bridge Engineering, 2019, 24, .	2.9	53
40	Power Spectral-Density Model for Pedestrian Walking Load. Journal of Structural Engineering, 2019, 145, .	3.4	15
41	Vision-based systems for structural deformation measurement: case studies. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2018, 171, 917-930.	0.8	11
42	A non-contact vision-based system for multipoint displacement monitoring in a cable-stayed footbridge. Structural Control and Health Monitoring, 2018, 25, e2155.	4.0	131
43	Using inertial measurement units originally developed for biomechanics for modal testing of civil engineering structures. Mechanical Systems and Signal Processing, 2018, 104, 776-798.	8.0	11
44	Time-dependent spectral analysis of interactions within groups of walking pedestrians and vertical structural motion using wavelets. Mechanical Systems and Signal Processing, 2018, 105, 502-523.	8.0	23
45	Bayesian operational modal analysis of Jiangyin Yangtze River Bridge. Mechanical Systems and Signal Processing, 2018, 110, 210-230.	8.0	53
46	Bayesian operational modal analysis with asynchronous data, part I: Most probable value. Mechanical Systems and Signal Processing, 2018, 98, 652-666.	8.0	18
47	Quantifying and managing uncertainty in operational modal analysis. Mechanical Systems and Signal Processing, 2018, 102, 139-157.	8.0	33
48	Posterior uncertainty, asymptotic law and Cram \tilde{A} @r-Rao bound. Structural Control and Health Monitoring, 2018, 25, e2113.	4.0	7
49	Review of machine-vision based methodologies for displacement measurement in civil structures. Journal of Civil Structural Health Monitoring, 2018, 8, 91-110.	3.9	204
50	Real-Life Measurement of Tri-Axial Walking Ground Reaction Forces Using Optimal Network of Wearable Inertial Measurement Units. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1243-1253.	4.9	30
51	Using inertial measurement units to identify medio-lateral ground reaction forces due to walking and swaying. Journal of Sound and Vibration, 2018, 426, 90-110.	3.9	9
52	Experimental modal analysis of British rock lighthouses. Marine Structures, 2018, 62, 1-22.	3.8	26
53	From phase drift to synchronisation – pedestrian stepping behaviour on laterally oscillating structures and consequences for dynamic stability. Journal of Sound and Vibration, 2017, 392, 382-399.	3.9	18
54	Analysis of load test on composite I-girder bridge. Journal of Civil Structural Health Monitoring, 2017, 7, 163-173.	3.9	7

#	Article	IF	CITATIONS
55	Low cost bridge load test: Calculating bridge displacement from acceleration for load assessment calculations. Engineering Structures, 2017, 143, 358-374.	5.3	50
56	Evolution of bridge frequencies and modes of vibration during truck passage. Engineering Structures, 2017, 152, 452-464.	5.3	73
57	Optimised ambient vibration testing of long span bridges. Procedia Engineering, 2017, 199, 38-47.	1.2	8
58	Parameter identification of pedestrian's spring-mass-damper model by ground reaction force records through a particle filter approach. Journal of Sound and Vibration, 2017, 411, 409-421.	3.9	21
59	Forced vibration testing of footbridges using calibrated human shaker and wireless sensors. Procedia Engineering, 2017, 199, 417-422.	1.2	6
60	Modal testing of offshore rock lighthouses around the British Isles. Procedia Engineering, 2017, 199, 3326-3331.	1.2	1
61	Long-span bridges: Enhanced data fusion of GPS displacement and deck accelerations. Engineering Structures, 2017, 147, 639-651.	5.3	46
62	OPERATIONAL MODAL ANALYSIS OF BRODIE TOWER USING A BAYESIAN APPROACH., 2017,,.		3
63	A framework for experimental determination of localised vertical pedestrian forces on full-scale structures using wireless attitude and heading reference systems. Journal of Sound and Vibration, 2016, 376, 217-243.	3.9	47
64	Thermal correlation analysis of a long-span suspension bridge static responses. , 2016, , .		2
65	Footbridge system identification using wireless inertial measurement units for force and response measurements. Journal of Sound and Vibration, 2016, 384, 339-355.	3.9	32
66	Vibration serviceability of Helix Bridge, Singapore. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2016, 169, 611-624.	0.8	10
67	Vibration stability of Orion laser facility. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2016, 169, 583-594.	0.8	1
68	Measuring human-induced vibrations of civil engineering structures via vision-based motion tracking. Measurement: Journal of the International Measurement Confederation, 2016, 83, 44-56.	5.0	17
69	Temperature Analysis of a Long-Span Suspension Bridge Based on Field Monitoring and Numerical Simulation. Journal of Bridge Engineering, 2016, 21, .	2.9	97
70	Universal response spectrum procedure for predicting walking-induced floor vibration. Mechanical Systems and Signal Processing, 2016, 70-71, 741-755.	8.0	25
71	Floor Vibration Serviceability in a Multistory Factory Building. Journal of Performance of Constructed Facilities, 2016, 30, .	2.0	12
72	Structural Health Monitoring of short to medium span bridges in the United Kingdom. Structural Monitoring and Maintenance, 2016, 3, 259-276.	1.7	10

#	Article	IF	Citations
73	Characterisation of Transient Actions Induced by Spectators on Sport Stadia. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 401-409.	0.5	1
74	Assessing uncertainty in operational modal analysis incorporating multiple setups using a Bayesian approach. Structural Control and Health Monitoring, 2015, 22, 395-416.	4.0	43
75	Development and application of a relative displacement sensor for structural health monitoring of composite bridges. Structural Control and Health Monitoring, 2015, 22, 726-742.	4.0	60
76	Effect of vehicular loading on suspension bridge dynamic properties. Structure and Infrastructure Engineering, 2015, 11, 129-144.	3.7	10
77	Measuring and modelling the thermal performance of the Tamar Suspension Bridge using a wireless sensor network. Structure and Infrastructure Engineering, 2015, 11, 176-193.	3.7	45
78	Effect of Solar Radiation on Suspension Bridge Performance. Journal of Bridge Engineering, 2015, 20, .	2.9	48
79	Operational deformations in long-span bridges. Structure and Infrastructure Engineering, 2015, 11, 556-574.	3.7	61
80	Structural identification of Humber Bridge for performance prognosis. Smart Structures and Systems, 2015, 15, 665-682.	1.9	9
81	Enhanced Vortex Shedding in a 183 m Industrial Chimney. Advances in Structural Engineering, 2014, 17, 951-960.	2.4	4
82	Experimental and Analytical Study of Seismic Soil-Pile-Structure Interaction in Layered Soil Half-Space. Journal of Earthquake Engineering, 2014, 18, 655-673.	2.5	4
83	Fast Bayesian modal identification of structures using known single-input forced vibration data. Structural Control and Health Monitoring, 2014, 21, 381-402.	4.0	29
84	Suspension bridge response due to extreme vehicle loads. Structure and Infrastructure Engineering, 2014, 10, 821-833.	3.7	15
85	Methodologies for predicting natural frequency variation of a suspension bridge. Engineering Structures, 2014, 80, 211-221.	5.3	57
86	Uncertainty law in ambient modal identificationâ€"Part I: Theory. Mechanical Systems and Signal Processing, 2014, 48, 15-33.	8.0	54
87	Uncertainty law in ambient modal identification—Part II: Implication and field verification. Mechanical Systems and Signal Processing, 2014, 48, 34-48.	8.0	39
88	Structural health monitoring of the Tamar suspension bridge. Structural Control and Health Monitoring, 2013, 20, 609-625.	4.0	154
89	Vibration monitoring and condition assessment of the University of Sheffield Arts Tower during retrofit. Journal of Civil Structural Health Monitoring, 2013, 3, 153-168.	3.9	6
90	Bayesian operational modal analysis: Theory, computation, practice. Computers and Structures, 2013, 126, 3-14.	4.4	157

#	Article	IF	CITATIONS
91	Long-term monitoring and data analysis of the Tamar Bridge. Mechanical Systems and Signal Processing, 2013, 35, 16-34.	8.0	293
92	Structural Identification: Opportunities and Challenges. Journal of Structural Engineering, 2013, 139, 1639-1647.	3.4	35
93	Modern Facilities for Experimental Measurement of Dynamic Loads Induced by Humans: A Literature Review. Shock and Vibration, 2013, 20, 53-67.	0.6	24
94	Numerical modelling for evaluating the TMD performance in an industrial chimney. Wind and Structures, an International Journal, 2013, 17, 263-274.	0.8	3
95	Full-Scale Validation of Dynamic Wind Load on a Super-Tall Building under Strong Wind. Journal of Structural Engineering, 2012, 138, 1161-1172.	3.4	23
96	Filtering environmental load effects to enhance novelty detection on cable-supported bridge performance. Bridge Maintenance, Safety and Management, 2012, , 745-752.	0.1	5
97	Mathematical modelling of random narrow band lateral excitation of footbridges due to pedestrians walking. Computers and Structures, 2012, 90-91, 116-130.	4.4	34
98	Field observations on modal properties of two tall buildings under strong wind. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 101, 12-23.	3.9	78
99	Frequency modulated empirical mode decomposition method for the identification of instantaneous modal parameters of aeroelastic systems. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 101, 43-52.	3.9	18
100	Fast Bayesian ambient modal identification in the frequency domain, Part I: Posterior most probable value. Mechanical Systems and Signal Processing, 2012, 26, 60-75.	8.0	136
101	Fast Bayesian ambient modal identification in the frequency domain, Part II: Posterior uncertainty. Mechanical Systems and Signal Processing, 2012, 26, 76-90.	8.0	113
102	Connecting Bayesian and frequentist quantification of parameter uncertainty in system identification. Mechanical Systems and Signal Processing, 2012, 29, 328-342.	8.0	55
103	Operational deformations in long span bridges. Bridge Maintenance, Safety and Management, 2012, , 32-45.	0.1	3
104	Stochastic model of continuously measured vertical pedestrian loads. Bridge Maintenance, Safety and Management, 2012, , 3701-3708.	0.1	0
105	Fast Bayesian FFT Method for Ambient Modal Identification with Separated Modes. Journal of Engineering Mechanics - ASCE, 2011, 137, 214-226.	2.9	177
106	Structural Finite Element Model Updating Using Vibration Tests and Modal Analysis for NPL footbridge – SHM demonstrator. Journal of Physics: Conference Series, 2011, 305, 012105.	0.4	3
107	Assembling mode shapes by least squares. Mechanical Systems and Signal Processing, 2011, 25, 163-179.	8.0	61
108	Vibration-based monitoring of civil infrastructure: challenges and successes. Journal of Civil Structural Health Monitoring, 2011, 1, 79-95.	3.9	242

#	Article	IF	Citations
109	Vibration testing of a steel girder bridge using cabled and wireless sensors. Frontiers of Architecture and Civil Engineering in China, 2011, 5, 249-258.	0.4	7
110	Stochastic model of near-periodic vertical loads due to humans walking. Advanced Engineering Informatics, 2011, 25, 259-275.	8.0	88
111	On assessing the posterior mode shape uncertainty in ambient modal identification. Probabilistic Engineering Mechanics, 2011, 26, 427-434.	2.7	48
112	Wireless monitoring of the longitudinal displacement of the Tamar Suspension Bridge deck under changing environmental conditions. , $2011,\ldots$		6
113	Reproduction and application of human bouncing and jumping forces from visual marker data. Journal of Sound and Vibration, 2010, 329, 3397-3416.	3.9	52
114	Real-time performance monitoring of tuned mass damper system for a 183m reinforced concrete chimney. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98, 169-179.	3.9	60
115	Response of high frequency floors: A literature review. Engineering Structures, 2010, 32, 337-352.	5.3	57
116	Ambient vibration re-testing and operational modal analysis of the Humber Bridge. Engineering Structures, 2010, 32, 2003-2018.	5.3	262
117	A FOLDED PENDULUM ISOLATOR FOR EVALUATING ACCELEROMETER PERFORMANCE. Experimental Techniques, 2009, 33, 33-37.	1.5	9
118	Experimental identification and analytical modelling of human walking forces: Literature review. Journal of Sound and Vibration, 2009, 326, 1-49.	3.9	296
119	Procedures for vibration serviceability assessment of high-frequency floors. Engineering Structures, 2008, 30, 1548-1559.	5.3	34
120	ARMA modelled time-series classification for structural health monitoring of civil infrastructure. Mechanical Systems and Signal Processing, 2008, 22, 295-314.	8.0	178
121	Fuzzy Clustering of Stability Diagrams for Vibrationâ€Based Structural Health Monitoring. Computer-Aided Civil and Infrastructure Engineering, 2008, 23, 360-372.	9.8	89
122	Identifying Loading and Response Mechanisms from Ten Years of Performance Monitoring of a Tall Building. Journal of Performance of Constructed Facilities, 2008, 22, 24-34.	2.0	24
123	Structural health monitoring of civil infrastructure. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 589-622.	3.4	633
124	Experimental methods for estimating modal mass in footbridges using human-induced dynamic excitation. Engineering Structures, 2007, 29, 2833-2843.	5.3	70
125	Using GPS for monitoring tall-building response to wind loading: filtering of abrupt changes and low-frequency noise, variography and spectral analysis of displacements. GPS Solutions, 2007, 11 , 85-95.	4.3	20
126	Application of time series analysis for bridge monitoring. Smart Materials and Structures, 2006, 15, 129-138.	3.5	144

#	Article	IF	Citations
127	Vibration control of ultra-sensitive facilities. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2006, 159, 295-306.	0.8	12
128	Direct observations of non-stationary bridge deck aeroelastic vibration in wind tunnel. Journal of Sound and Vibration, 2006, 291, 202-214.	3.9	2
129	Effects of infill walls and floor diaphragms on the dynamic characteristics of a narrow-rectangle building. Earthquake Engineering and Structural Dynamics, 2006, 35, 637-651.	4.4	13
130	<title>Converting signals to knowledge in structural health monitoring systems</title> ., 2005,,.		0
131	Efficient dynamic performance assessment of a footbridge. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2005, 158, 185-192.	0.6	4
132	Some considerations on the effects of the P-derivatives on bridge deck flutter. Journal of Sound and Vibration, 2005, 283, 957-969.	3.9	16
133	Lateral loading and response for a tall building in the non-seismic doldrums. Engineering Structures, 2005, 27, 1801-1812.	5.3	26
134	Development of fiber Bragg grating sensors for monitoring civil infrastructure. Engineering Structures, 2005, 27, 1828-1834.	5.3	220
135	Lessons from monitoring the performance of highway bridges. Structural Control and Health Monitoring, 2005, 12, 227-244.	4.0	42
136	Vibration Excitation and Control of a Pedestrian Walkway by Individuals and Crowds. Shock and Vibration, 2005, 12, 333-347.	0.6	14
137	Bridge Structural Condition Assessment Using Systematically Validated Finite-Element Model. Journal of Bridge Engineering, 2004, 9, 418-423.	2.9	33
138	Identification of unusual events in multi-channel bridge monitoring data. Mechanical Systems and Signal Processing, 2004, 18, 409-430.	8.0	53
139	Correlating measured and simulated dynamic responses of a tall building to long-distance earthquakes. Earthquake Engineering and Structural Dynamics, 2004, 33, 611-632.	4.4	15
140	Effect of relative amplitude on bridge deck flutter. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92, 493-508.	3.9	5
141	A spectral density approach for modelling continuous vertical forces on pedestrian structures due to walking. Canadian Journal of Civil Engineering, 2004, 31, 65-77.	1.3	160
142	Highway bridge live loading assessment and load carrying capacity estimation using a health monitoring system. Structural Engineering and Mechanics, 2004, 18, 609-626.	1.0	15
143	Load-Carrying Capacity Evaluation of Damaged Reinforced Concrete Structures by Dynamic Testing and Finite-Element Model Updating. Journal of Testing and Evaluation, 2004, 32, 11791.	0.7	2
144	Residual stiffness assessment of structurally failed reinforced concrete structure by dynamic testing and finite element model updating. Experimental Mechanics, 2003, 43, 372-378.	2.0	9

#	Article	IF	CITATIONS
145	Ambient vibration studies for system identification of tall buildings. Earthquake Engineering and Structural Dynamics, 2003, 32, 71-95.	4.4	190
146	Time domain formulation of self-excited forces on bridge deck for wind tunnel experiment. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91, 723-736.	3.9	7
147	Assessment of Highway Bridge Upgrading by Dynamic Testing and Finite-Element Model Updating. Journal of Bridge Engineering, 2003, 8, 162-172.	2.9	221
148	Identification of unusual events in multichannel bridge monitoring data using wavelet transform and outlier analysis. , 2003 , , .		2
149	Application of Box-Jenkins Models for Assessing the Effect of Unusual Events Recorded by Structural Health Monitoring Systems. Structural Health Monitoring, 2002, 1, 149-160.	7. 5	12
150	Application of quasi-distributed fibre Bragg grating sensors in reinforced concrete structures. Measurement Science and Technology, 2002, 13, 583-589.	2.6	28
151	Thermal compensation of Bragg grating for structural health monitoring. , 2002, , .		0
152	Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation. Journal of Engineering Mechanics - ASCE, 2002, 128, 380-391.	2.9	645
153	DETECTION OF ANOMALOUS STRUCTURAL BEHAVIOUR USING WAVELET ANALYSIS. Mechanical Systems and Signal Processing, 2002, 16, 429-445.	8.0	69
154	Damage identification of structures with uncertain frequency and mode shape data. Earthquake Engineering and Structural Dynamics, 2002, 31, 1053-1066.	4.4	130
155	Multivariate Monitoring with GPS Observations and Auxillary Multisensor Data. GPS Solutions, 2002, 5, 58-69.	4.3	4
156	<title>Integrating experimental and analytical data for validating finite element models</title> ., 2001, 4317, 335.		0
157	Energy Dissipation from Vibrating Floor Slabs due to Human-Structure Interaction. Shock and Vibration, 2001, 8, 315-323.	0.6	56
158	<title>Experiences with fiber optic Bragg grating sensors in civil engineering</title> ., 2001,,.		0
159	<title>Bridge health monitoring using wavelet analysis</title> ., 2001, 4317, 546.		2
160	<title>Simultaneous monitoring of the amplitude and location of loading with fiber Bragg grating sensor arrays</title> ., 2001, 4337, 451.		0
161	<title>Effects of human postures on energy dissipation from vibrating floors</title> ., 2001, 4317, 489.		11
162	< title $>$ Vibration measurement and mode analysis on concrete structures with embedded fiber Bragg grating sensors $<$ /title $>$. , 2001, , .		0

#	Article	IF	Citations
163	<title>Measurement of contact forces between human and vibrating floors using fiber Bragg grating foot sensors</title> ., 2001, , .		2
164	<title>Monitoring of concrete curing process with embedded fiber Bragg gratings</title> ., 2001, 4204, 23.		1
165	Civil structure condition assessment by FE model updating:. Finite Elements in Analysis and Design, 2001, 37, 761-775.	3.2	242
166	Response of tall buildings to weak long distance earthquakes. Earthquake Engineering and Structural Dynamics, 2001, 30, 709-729.	4.4	28
167	Strategies for aeroelastic parameter identification from bridge deck free vibration data. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89, 1113-1136.	3.9	30
168	<title>Simultaneous monitoring of strain and temperature in concrete structures with embedded fiber Bragg gratings</title> .,2001,,.		0
169	The Bengkulu, Southern Sumatra, Earthquake of 4 June 2000 (Mw = 7.7): Another Warning to Remote Metropolitan Areas. Seismological Research Letters, 2001, 72, 171-185.	1.9	21
170	<title>Monitoring of Singapore-Malaysia second link during construction</title> ., 2001,,.		5
171	<title>Modeling and simulation of human-floor system under vertical vibration</title> ., 2001, 4327, 513.		19
172	<title>Discussion of human resonant frequency</title> ., 2001, , .		5
173	Wind tunnel section model study of aeroelastic performance for Ting Kau Bridge Deck. Wind and Structures, an International Journal, 2001, 4, 367-382.	0.8	8
174	Correlating dynamic characteristics from field measurements and numerical analysis of a high-rise building., 2000, 29, 523-543.		41
175	Dynamic Assessment of Curved Cable-Stayed Bridge by Model Updating. Journal of Structural Engineering, 2000, 126, 252-260.	3.4	208
176	Dynamic performance of a curved cable-stayed bridge. Engineering Structures, 1999, 21, 1015-1027.	5.3	50
177	Dynamics of an aerial cableway system. Engineering Structures, 1998, 20, 826-836.	5.3	23
178	Full-Scale Dynamic Response of High-Rise Building to Lateral Loading. Journal of Performance of Constructed Facilities, 1998, 12, 33-40.	2.0	6
179	VIBRATION CHARACTERISTICS OF A SUSPENSION FOOTBRIDGE. Journal of Sound and Vibration, 1997, 202, 29-46.	3.9	50
180	Analysis of experimental data from wind-induced response of a long span bridge. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54-55, 13-24.	3.9	10

#	Article	IF	CITATIONS
181	Observations on non-linear dynamic characteristics of suspension bridges. Earthquake Engineering and Structural Dynamics, 1994, 23, 1351-1367.	4.4	58
182	Humber bridge full-scale measurement campaigns 1990–1991. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 52, 185-218.	3.9	74
183	Dynamic investigation of a suspension footbridge. Engineering Structures, 1994, 16, 395-406.	5.3	32
184	ESTIMATION OF DAMPING IN SUSPENSION BRIDGES Proceedings of the Institution of Civil Engineers: Structures and Buildings, 1994, 104, 401-415.	0.8	26
185	Measurements of static and dynamic displacement from visual monitoring of the Humber Bridge. Engineering Structures, 1993, 15, 197-208.	5.3	111
186	Suspension bridge parameter identification in full scale test. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41, 165-176.	3.9	30
187	Seismic analysis of the fatih sultan mehmet (second Bosporus) suspension bridge. Earthquake Engineering and Structural Dynamics, 1992, 21, 881-906.	4.4	28
188	Ambient vibration survey of the fatih sultan mehmet (second Bosporus) suspension bridge. Earthquake Engineering and Structural Dynamics, 1992, 21, 907-924.	4.4	81
189	The detection of defects in GRP lattice structures by vibration measurements. NDT and E International, 1991, 24, 123-134.	3.7	8
190	Resonance-search tests on a small-scale model of a cable-stayed bridge. Engineering Structures, 1991, 13, 59-66.	5.3	20
191	Ambient vibration survey of the bosporus suspension bridge. Earthquake Engineering and Structural Dynamics, 1989, 18, 263-283.	4.4	53
192	AMBIENT VIBRATION MEASUREMENTS OF THE HUMBER SUSPENSION BRIDGE AND COM PARISON WITH CALCULATED CHARACTERISTICS. Proceedings of the Institution of Civil Engineers, 1987, 83, 561-600.	0.1	44
193	Errors in mechanical impedance data obtained with impedance heads. Journal of Sound and Vibration, 1980, 73, 461-468.	3.9	21