Mariacristina Missale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9548074/publications.pdf

Version: 2024-02-01

91 papers

6,627 citations

34 h-index 80 g-index

93 all docs 93 docs citations

93 times ranked 7170 citing authors

#	Article	IF	CITATIONS
1	Dopamine Receptors: From Structure to Function. Physiological Reviews, 1998, 78, 189-225.	13.1	3,059
2	Regulation of Dopamine D1 Receptor Trafficking and Desensitization by Oligomerization with Glutamate N-Methyl-D-aspartate Receptors. Journal of Biological Chemistry, 2003, 278, 20196-20202.	1.6	200
3	Reciprocal Regulation of Dopamine D1 and D3 Receptor Function and Trafficking by Heterodimerization. Molecular Pharmacology, 2008, 74, 59-69.	1.0	195
4	Anterior Pituitary Hypoplasia and Dwarfism in Mice Lacking the Dopamine Transporter. Neuron, 1997, 19, 127-138.	3.8	192
5	Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson's disease. Journal of Neurochemistry, 2011, 116, 588-605.	2.1	178
6	Review: Parkinson's disease: from synaptic loss to connectome dysfunction. Neuropathology and Applied Neurobiology, 2016, 42, 77-94.	1.8	163
7	Dopamine Uptake is Differentially Regulated in Rat Striatum and Nucleus Accumbens. Journal of Neurochemistry, 1985, 45, 51-56.	2.1	132
8	\hat{l}_{\pm} -synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons. Journal of Cell Science, 2015, 128, 2231-2243.	1.2	99
9	From $\hat{l}\pm$ -synuclein to synaptic dysfunctions: New insights into the pathophysiology of Parkinson's disease. Brain Research, 2012, 1476, 183-202.	1.1	89
10	D2 dopamine receptors associated with inhibition of dopamine release from rat neostriatum are independent of cyclic AMP. Neuroscience Letters, 1986, 71, 192-196.	1.0	79
11	Loss of Synaptic D1 Dopamine/N-Methyl-d-aspartate Glutamate Receptor Complexes in l-DOPA-Induced Dyskinesia in the Rat. Molecular Pharmacology, 2006, 69, 805-812.	1.0	75
12	Alphaâ€synuclein aggregation and cell death triggered by energy deprivation and dopamine overload are counteracted by D ₂ /D ₃ receptor activation. Journal of Neurochemistry, 2008, 106, 560-577.	2.1	74
13	The NMDA/D1 Receptor Complex as a New Target in Drug Development. Current Topics in Medicinal Chemistry, 2006, 6, 801-808.	1.0	72
14	The Contribution of <i>α</i> -Synuclein Spreading to Parkinson's Disease Synaptopathy. Neural Plasticity, 2017, 2017, 1-15.	1.0	70
15	Nerve Growth Factor Regulates Dopamine D2 Receptor Expression in Prolactinoma Cell Lines via p75NGFR-Mediated Activation of Nuclear Factor-κB. Molecular Endocrinology, 2002, 16, 353-366.	3.7	66
16	L-α-glycerylphorylcholine antagonizes scopolamine-induced amnesia and enhances hippocampal cholinergic transmission in the rat. European Journal of Pharmacology, 1992, 211, 351-358.	1.7	65
17	Redistribution of DAT/α-Synuclein Complexes Visualized by "In Situ―Proximity Ligation Assay in Transgenic Mice Modelling Early Parkinson's Disease. PLoS ONE, 2011, 6, e27959.	1.1	62
18	Mitochondrial Dysfunction andα-Synuclein Synaptic Pathology in Parkinson's Disease: Who's on First?. Parkinson's Disease, 2015, 2015, 1-10.	0.6	62

#	Article	IF	Citations
19	Epidermal Growth Factor Induces the Functional Expression of Dopamine Receptors in the GH3 Cell Line*. Endocrinology, 1991, 128, 13-20.	1.4	61
20	Nicotine-Induced Structural Plasticity in Mesencephalic Dopaminergic Neurons Is Mediated by Dopamine D3 Receptors and Akt-mTORC1 Signaling. Molecular Pharmacology, 2013, 83, 1176-1189.	1.0	61
21	GPNMB/OA protein increases the invasiveness of human metastatic prostate cancer cell lines DU145 and PC3 through MMP-2 and MMP-9 activity. Experimental Cell Research, 2014, 323, 100-111.	1.2	61
22	Repeated reserpine administration up-regulates the transduction mechanisms of D1 receptors without changing the density of [3H]SCH 23390 binding. Brain Research, 1989, 483, 117-122.	1.1	58
23	Dimerization of dopamine D1 and D3 receptors in the regulation of striatal function. Current Opinion in Pharmacology, 2010, 10, 87-92.	1.7	58
24	Nuclear Factor-κB Dysregulation and α-Synuclein Pathology: Critical Interplay in the Pathogenesis of Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 68.	1.7	56
25	Synapsin III deficiency hampers α-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson's disease. Acta Neuropathologica, 2018, 136, 621-639.	3.9	53
26	Characterization of Dopamine Receptors Associated with Aldosterone Secretion in Rat Adrenal Glomerulosa*. Endocrinology, 1986, 119, 2227-2232.	1.4	48
27	Dopamine D3 receptorâ€preferring agonists increase dendrite arborization of mesencephalic dopaminergic neurons via extracellular signalâ€regulated kinase phosphorylation. European Journal of Neuroscience, 2008, 28, 1231-1240.	1.2	48
28	Identification and Characterization of Postsynaptic D1- and D2-Dopamine Receptors in the Cardiovascular System. Journal of Cardiovascular Pharmacology, 1988, 11, 643-650.	0.8	45
29	Identification and Characterization of Two Nuclear Factor-κB Sites in the Regulatory Region of the Dopamine D2 Receptor. Endocrinology, 2007, 148, 2563-2570.	1.4	43
30	Preâ€synaptic dopamine D ₃ receptor mediates cocaineâ€induced structural plasticity in mesencephalic dopaminergic neurons via ERK and Akt pathways. Journal of Neurochemistry, 2012, 120, 765-778.	2.1	43
31	Repeated administration of (â^') sulpiride and SCH 23390 differentially up-regulate D-1 and D-2 dopamine receptor function in rat mesostriatal areas but not in cortical-limbic brain regions. European Journal of Pharmacology, 1987, 138, 45-51.	1.7	39
32	Alpha-synuclein synaptic pathology and its implications in the development of novel therapeutic approaches to cure Parkinson's disease. Brain Research, 2012, 1432, 95-113.	1.1	39
33	Synapsin III is a key component of αâ€synuclein fibrils in Lewy bodies of PD brains. Brain Pathology, 2018, 28, 875-888.	2.1	37
34	The neurobiology of dopamine receptors: evolution from the dual concept to heterodimer complexes. Journal of Receptor and Signal Transduction Research, 2010, 30, 347-354.	1.3	36
35	The D3 dopamine receptor: From structural interactions to function. European Neuropsychopharmacology, 2015, 25, 1462-1469.	0.3	35
36	The "In Situ―Proximity Ligation Assay to Probe Protein–Protein Interactions in Intact Tissues. Methods in Molecular Biology, 2014, 1174, 397-405.	0.4	35

#	Article	IF	Citations
37	Nerve Growth Factor in Pituitary Development and Pituitary Tumors. Frontiers in Neuroendocrinology, 1998, 19, 128-150.	2.5	34
38	Nerve growth factor signaling in prostate health and disease. Growth Factors, 2010, 28, 191-201.	0.5	33
39	Persistent activation of the D1R/Shp-2/Erk1/2 pathway in l-DOPA-induced dyskinesia in the 6-hydroxy-dopamine rat model of Parkinson's disease. Neurobiology of Disease, 2013, 54, 339-348.	2.1	33
40	Extracellular clusterin limits the uptake of αâ€synuclein fibrils by murine and human astrocytes. Glia, 2021, 69, 681-696.	2.5	32
41	Antisecretive and Antitumor Activity of Abiraterone Acetate in Human Adrenocortical Cancer: A Preclinical Study. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4594-4602.	1.8	31
42	Pharmacological characterization of D1 and D2 dopamine receptors in rat limbocortical areas. II. Dorsal hippocampus. Neuroscience Letters, 1988, 87, 253-258.	1.0	30
43	Alpha-synuclein modulates NR2B-containing NMDA receptors and decreases their levels after rotenone exposure. Neurochemistry International, 2015, 85-86, 14-23.	1.9	30
44	Role of Dopamine D2/D3 Receptors in Development, Plasticity, and Neuroprotection in Human iPSC-Derived Midbrain Dopaminergic Neurons. Molecular Neurobiology, 2018, 55, 1054-1067.	1.9	30
45	Palbociclib inhibits proliferation of human adrenocortical tumor cells. Endocrine, 2018, 59, 213-217.	1.1	28
46	Dopamine D3 Receptor Heteromerization: Implications for Neuroplasticity and Neuroprotection. Biomolecules, 2020, 10, 1016.	1.8	28
47	Dopamine D3 and acetylcholine nicotinic receptor heteromerization in midbrain dopamine neurons: Relevance for neuroplasticity. European Neuropsychopharmacology, 2017, 27, 313-324.	0.3	27
48	The tyrosine phosphatase Shpâ€2 interacts with the dopamine D ₁ receptor and triggers D ₁ â€mediated Erk signaling in striatal neurons. Journal of Neurochemistry, 2011, 117, 253-263.	2.1	25
49	Nicotine prevents alpha-synuclein accumulation in mouse and human iPSC-derived dopaminergic neurons through activation of the dopamine D3- acetylcholine nicotinic receptor heteromer. Neurobiology of Disease, 2019, 129, 1-12.	2.1	25
50	Evidence for the presence of D1 and D2 dopamine receptors in the rat adrenal cortex. European Journal of Pharmacology, 1985, 109, 315-316.	1.7	23
51	Nerve growth factor induces the re-expression of functional androgen receptors and p75 (NGFR) in the androgen-insensitive prostate cancer cell line DU145. European Journal of Endocrinology, 2002, 147, 407-415.	1.9	22
52	In vitro antitumor activity of progesterone in human adrenocortical carcinoma. Endocrine, 2019, 63, 592-601.	1.1	21
53	Role of receptor heterodimers in the development of l-dopa-induced dyskinesias in the 6-hydroxydopamine rat model of Parkinson's disease. Parkinsonism and Related Disorders, 2008, 14, S159-S164.	1.1	20
54	Dopamine Transporter l±-Synuclein Complexes Are Altered in the Post Mortem Caudate Putamen of Parkinsonâ∈™s Disease: An In Situ Proximity Ligation Assay Study. International Journal of Molecular Sciences, 2018, 19, 1611.	1.8	20

#	Article	IF	CITATIONS
55	Alpha-synuclein/synapsin III pathological interplay boosts the motor response to methylphenidate. Neurobiology of Disease, 2020, 138, 104789.	2.1	19
56	Nerve Growth Factor Restores p53 Function in Pituitary Tumor Cell Lines via trkA-Mediated Activation of Phosphatidylinositol 3-Kinase. Molecular Endocrinology, 2004, 18, 162-172.	3.7	18
57	Pharmacological characterization of D1 and D2 dopamine receptors in rat limbocortical areas. I. Frontal cortex. Neuroscience Letters, 1988, 87, 247-252.	1.0	17
58	The 5-alpha reductase inhibitor finasteride reduces dyskinesia in a rat model of Parkinson's disease. Experimental Neurology, 2017, 291, 1-7.	2.0	17
59	Identification of D-2 dopaminergic receptors in bovine adrenal cortex. Life Sciences, 1985, 37, 2539-2548.	2.0	15
60	Dopaminergic Regulation of Aldosterone Secretion. American Journal of Hypertension, 1990, 3, 93S-95S.	1.0	15
61	Growth factors in pituitary tumors. Pituitary, 1999, 1, 153-158.	1.6	15
62	Low doses of I-sulpiride down-regulate striatal and cortical dopamine receptors and \hat{I}^2 -adrenoceptors. European Journal of Pharmacology, 1991, 199, 247-253.	1.7	14
63	Group-II metabotropic glutamate receptors negatively modulate NMDA transmission at striatal cholinergic terminals: Role of P/Q-type high voltage activated Ca++ channels and endogenous dopamine. Molecular and Cellular Neurosciences, 2006, 31, 284-292.	1.0	14
64	Shpâ€2 knockdown prevents <scp>l</scp> â€dopaâ€induced dyskinesia in a rat model of Parkinson's disease. Movement Disorders, 2016, 31, 512-520.	2.2	14
65	The novel hybrid agonist HyNDA-1 targets the D3R-nAChR heteromeric complex in dopaminergic neurons. Biochemical Pharmacology, 2019, 163, 154-168.	2.0	14
66	Impaired dopamine D3 and nicotinic acetylcholine receptor membrane localization in iPSCs-derived dopaminergic neurons from two Parkinson's disease patients carrying the LRRK2 G2019S mutation. Neurobiology of Aging, 2021, 99, 65-78.	1.5	14
67	Striatal adenylate cyclase-inhibiting dopamine D2 receptors are not affected by the aging process. Neuroscience Letters, 1987, 75, 38-42.	1.0	13
68	Nerve growth factor and retinoic acid interactions in the control of small cell lung cancer proliferation. European Journal of Endocrinology, 2002, 147, 371-379.	1.9	12
69	Bifunctional compounds targeting both D2 and non-α7 nACh receptors: Design, synthesis and pharmacological characterization. European Journal of Medicinal Chemistry, 2015, 101, 367-383.	2.6	12
70	Repeated administration of lisuride down-regulates dopamine D-2 receptor function in mesostriatal and in mesolimbocortical rat brain regions. European Journal of Pharmacology, 1990, 176, 85-90.	1.7	11
71	Depletion of Progranulin Reduces GluN2B-Containing NMDA Receptor Density, Tau Phosphorylation, and Dendritic Arborization in Mouse Primary Cortical Neurons. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 164-175.	1.3	11
72	Evidence for the presence of both D-1 and D-2 dopamine receptors in human esophagus. Life Sciences, 1990, 47, 447-455.	2.0	10

#	Article	IF	CITATIONS
73	Opposing roles for D-1 and D-2 dopamine receptors in the regulation of lower esophageal sphincter motility in the rat. Life Sciences, 1994, 54, 1035-1045.	2.0	10
74	Epidermal Growth Factor Promotes Uncoupling from Adenylyl Cyclase of the Rat D _{2S} Receptor Expressed in GH4C1 Cells. Journal of Neurochemistry, 1994, 62, 907-915.	2.1	10
7 5	Receptor heteromers in Parkinson's disease and L-DOPA-induced dyskinesia. CNS and Neurological Disorders - Drug Targets, 2013, 12, 1101-13.	0.8	10
76	Differential effect of acute reserpine administration on D-1 and D-2 dopaminergic receptor density and function in rat striatum. Neurochemistry International, 1989, 14, 61-64.	1.9	9
77	Increased serum concentration of nerve growth factor in patients with microprolactinoma. Neuropeptides, 2004, 38, 21-24.	0.9	7
78	Dopaminergic Receptor Mechanisms Modulating the Renin-Angiotensin System and Aldosterone Secretion. Journal of Cardiovascular Pharmacology, 1989, 14, S29-S39.	0.8	6
79	Differential gene expression of dopamine D-2 receptor subtypes in rat chromaffin cells and sympathetic neurons in culture. NeuroReport, 2000, 11, 2467-2471.	0.6	6
80	Molecular and pharmacological detection of dopaminergic receptors in the human male urinary tract. Neurourology and Urodynamics, 2009, 28, 343-348.	0.8	6
81	Growth factors in the pathogenesis of prolactin-secreting tumors. Journal of Endocrinological Investigation, 1998, 21, 402-411.	1.8	5
82	Structural Plasticity of Dopaminergic Neurons Requires the Activation of the D3R-nAChR Heteromer and the Pl3K-ERK1/2/Akt-Induced Expression of c-Fos and p70S6K Signaling Pathway. Molecular Neurobiology, 2022, 59, 2129-2149.	1.9	5
83	Nerve growth factor, D2 receptor isoforms, and pituitary tumors. Endocrine, 2012, 42, 466-467.	1.1	4
84	Induced pluripotent stem cells for defining Parkinsonian patient subtypes: a further step toward precision medicine. Neural Regeneration Research, 2022, 17, 767.	1.6	4
85	Differential effects of metformin on reductive activity and energy production in pituitary tumor cells compared to myogenic precursors. Endocrine, 2020, 69, 604-614.	1.1	3
86	Differential up-regulation of D-1 and D-2 dopamine receptor function in mesostriatal areas but not in cortical-limbic brain regions of rats chronically treated with (?)sulpiride and SCH 23390. Drug Development Research, 1987, 11, 243-249.	1.4	2
87	Establishment and characterization of induced pluripotent stem cell (iPSCs) line UNIBSi014-A from a healthy female donor. Stem Cell Research, 2021, 51, 102216.	0.3	2
88	Effects of chronic treatment with L-alpha-glycerylphosphorylcholine on hippocampal cholinergic transmission in the rat. Drug Development Research, 1992, 27, 277-286.	1.4	1
89	Generation of two human induced pluripotent stem cell lines, UNIBSi012-A and UNIBSi013-A, from two patients with treatment-resistant depression. Stem Cell Research, 2020, 49, 102104.	0.3	1
90	Recent Advances in Dopamine D3 Receptor Heterodimers: Focus on Dopamine D3 and D1 Receptor–Receptor Interaction and Striatal Function. Current Topics in Behavioral Neurosciences, 2022, , 1.	0.8	1

ARTICLE IF CITATIONS

91 Oligomerization of Dopamine D1 and Glutamate NMDA Receptors: A New Mechanism Regulating Striatal O