Massimo Chiaradia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9547630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper enrichment in arc magmas controlled by overriding plate thickness. Nature Geoscience, 2014, 7, 43-46.	12.9	280
2	Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective. Scientific Reports, 2015, 5, 8115.	3.3	224
3	How Accurately Can We Date the Duration of Magmatic-Hydrothermal Events in Porphyry Systems?An Invited Paper. Economic Geology, 2013, 108, 565-584.	3.8	213
4	Adakite-like magmas from fractional crystallization and melting-assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chemical Geology, 2009, 265, 468-487.	3.3	156
5	High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite. Geochimica Et Cosmochimica Acta, 2014, 127, 39-56.	3.9	154
6	Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries. Science of the Total Environment, 2011, 412-413, 239-247.	8.0	151
7	Why large porphyry Cu deposits like high Sr/Y magmas?. Scientific Reports, 2012, 2, 685.	3.3	147
8	Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contributions To Mineralogy and Petrology, 2009, 158, 563-588.	3.1	128
9	Early–Middle Jurassic intra-oceanic subduction in the İzmir-Ankara-Erzincan Ocean, Northern Turkey. Tectonophysics, 2011, 509, 120-134.	2.2	125
10	Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru). Lithos, 2014, 198-199, 129-140.	1.4	115
11	Rapid transition to long-lived deep crustal magmatic maturation and the formation of giant porphyry-related mineralization (Yanacocha, Peru). Earth and Planetary Science Letters, 2009, 288, 505-515.	4.4	110
12	40Ar/39Ar ages and Sr–Nd–Pb–Os geochemistry of CAMP tholeiites from Western Maranhño basin (NE)	Tj <u>F</u> TQq0	0 Q rgBT /Ov
13	Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment. Scientific Reports, 2017, 7, 44523.	3.3	106
14	The Central Atlantic Magmatic Province (CAMP): A Review. Topics in Geobiology, 2018, , 91-125.	0.5	103
15	(Pre-) historic changes in natural and anthropogenic heavy metals deposition inferred from two contrasting Swiss Alpine lakes. Quaternary Science Reviews, 2011, 30, 224-233.	3.0	102
16	Compositional diversity of Eocene–Oligocene basaltic magmatism in the Eastern Rhodopes, SE Bulgaria: implications for genesis and tectonic setting. Tectonophysics, 2004, 393, 301-328.	2.2	100

17	Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 2014, 190-191, 383-402.	1.4	98

Re?Os and Pb?Pb geochronology of the Archean Salobo iron oxide copper?gold deposit, Caraj�s mineral province, northern Brazil. Mineralium Deposita, 2003, 38, 727-738. 18 4.1 97

#	Article	IF	CITATIONS
19	Sulfide Minerals in Hydrothermal Deposits. Elements, 2017, 13, 97-103.	0.5	97
20	Enriched Basaltic Andesites from Mid-crustal Fractional Crystallization, Recharge, and Assimilation (Pilavo Volcano, Western Cordillera of Ecuador). Journal of Petrology, 2011, 52, 1107-1141.	2.8	93
21	Characterisation of Triassic rifting in Peru and implications for the early disassembly of western Pangaea. Gondwana Research, 2016, 35, 124-143.	6.0	92
22	Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan. Gondwana Research, 2016, 37, 465-503.	6.0	88
23	Origin of fluids in iron oxide–copper–gold deposits: constraints from δ 37Cl, 87Sr/86Sri and Cl/Br. Mineralium Deposita, 2006, 41, 565-573.	4.1	86
24	Different contamination styles of prehistoric human teeth at a Swiss necropolis (Sion, Valais) inferred from lead and strontium isotopes. Applied Geochemistry, 2003, 18, 353-370.	3.0	82
25	Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research, 2016, 31, 271-294.	6.0	82
26	Behaviour of airborne lead and temporal variations of its source effects in Geneva (Switzerland): comparison of anthropogenic versus natural processes. Atmospheric Environment, 2000, 34, 959-971.	4.1	81
27	Identification of historical lead sources in roof dusts and recent lake sediments from an industrialized area: indications from lead isotopes. Science of the Total Environment, 1997, 205, 107-128.	8.0	80
28	Lead isotope variations across terrane boundaries of the Tien Shan and Chinese Altay. Mineralium Deposita, 2006, 41, 411-428.	4.1	77
29	Identification of secondary lead sources in the air of an urban environment. Atmospheric Environment, 1997, 31, 3511-3521.	4.1	70
30	Cenozoic continental arc magmatism and associated mineralization in Ecuador. Mineralium Deposita, 2004, 39, 204-222.	4.1	70
31	COLUMBITE-TANTALITE-BEARING GRANITIC PEGMATITES FROM THE SERIDO BELT, NORTHEASTERN BRAZIL: GENETIC CONSTRAINTS FROM U-Pb DATING AND Pb ISOTOPES. Canadian Mineralogist, 2006, 44, 69-86.	1.0	70
32	Sr, Nd, Pb and Os Isotope Systematics of CAMP Tholeiites from Eastern North America (ENA): Evidence of a Subduction-enriched Mantle Source. Journal of Petrology, 2014, 55, 133-180.	2.8	69
33	Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data. Lithos, 2014, 210-211, 224-241.	1.4	69
34	Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	69
35	The Central Atlantic Magmatic Province (CAMP) in Morocco. Journal of Petrology, 2019, 60, 945-996.	2.8	68
36	Upper and lower crust recycling in the source of CAMP basaltic dykes from southeastern North America. Earth and Planetary Science Letters, 2013, 376, 186-199.	4.4	66

#	Article	IF	CITATIONS
37	Devonian to Permian evolution of the Paleo-Tethys Ocean: New evidence from U–Pb zircon dating and Sr–Nd–Pb isotopes of the Darrehanjir–Mashhad "ophiolitesâ€, NE Iran. Gondwana Research, 2015, 28, 781-799.	6.0	65
38	U–Pb, Re–Os, and 40Ar/39Ar geochronology of the Nambija Au-skarn and Pangui porphyry Cu deposits, Ecuador: implications for the Jurassic metallogenic belt of the Northern Andes. Mineralium Deposita, 2009, 44, 371-387.	4.1	64
39	Distinguishing between in-situ and accretionary growth of continents along active margins. Lithos, 2014, 202-203, 382-394.	1.4	64
40	Plumbotectonic Evolution of the Ossa Morena Zone, Iberian Peninsula:Tracing the Influence of Mantle-Crust Interaction in Ore-Forming Processes. Economic Geology, 2004, 99, 965-985.	3.8	63
41	The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalent to the Arequipa–Antofalla block of southern Peru? Implications for West Gondwana margin evolution. Gondwana Research, 2008, 13, 163-175.	6.0	61
42	Enriched mantle source for the Central Atlantic magmatic province: New supporting evidence from southwestern Europe. Lithos, 2014, 188, 15-32.	1.4	61
43	The calc-alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): Implications for the Eocene magmatic flare-up in Central Iran. Lithos, 2016, 248-251, 517-535.	1.4	60
44	Middle Jurassic to Cenozoic evolution of arc magmatism during Neotethys subduction and arc-continent collision in the Kapan Zone, southern Armenia. Lithos, 2013, 177, 61-78.	1.4	59
45	Evidence for Residual Melt Extraction in the Takidani Pluton, Central Japan. Journal of Petrology, 2017, 58, 763-788.	2.8	59
46	Mesozoic arc magmatism along the southern Peruvian margin during Gondwana breakup and dispersal. Lithos, 2012, 146-147, 48-64.	1.4	57
47	Gold endowments of porphyry deposits controlled by precipitation efficiency. Nature Communications, 2020, 11, 248.	12.8	56
48	Timing of juvenile arc crust formation and evolution in the Sapat Complex (Kohistan–Pakistan). Chemical Geology, 2011, 280, 243-256.	3.3	55
49	Supra-subduction zone magmatism of the Neyriz ophiolite, Iran: constraints from geochemistry and Sr-Nd-Pb isotopes. International Geology Review, 2014, 56, 1395-1412.	2.1	51
50	Constraint on foreland basin migration in the Zagros mountain belt using Sr isotope stratigraphy. Basin Research, 2015, 27, 714-728.	2.7	50
51	Crustal magmatic controls on the formation of porphyry copper deposits. Nature Reviews Earth & Environment, 2021, 2, 542-557.	29.7	50
52	The Hypogene Iron Oxide Copper-Gold Mineralization in the Mantoverde District, Northern Chile. Economic Geology, 2010, 105, 1271-1299.	3.8	47
53	The Eldivan ophiolite and volcanic rocks in the İzmir–Ankara–Erzincan suture zone, Northern Turkey: Geochronology, whole-rock geochemical and Nd–Sr–Pb isotope characteristics. Lithos, 2013, 172-173, 31-46.	1.4	47
54	High-Resolution Geochronology of the Coroccohuayco Porphyry-Skarn Deposit, Peru: A Rapid Product of the Incaic Orogeny. Economic Geology, 2015, 110, 423-443.	3.8	47

#	Article	IF	CITATIONS
55	Cretaceous subduction-related magmatism and associated porphyry-type Cu–Mo prospects in the Eastern Pontides, Turkey: New constraints from geochronology and geochemistry. Lithos, 2016, 248-251, 119-137.	1.4	46
56	Geodynamic controls on Tertiary arc magmatism in Ecuador: Constraints from U–Pb zircon geochronology of Oligocene–Miocene intrusions and regional age distribution trends. Tectonophysics, 2010, 489, 159-176.	2.2	45
57	Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: Implications for geodynamic evolution of the Turkish–Iranian High Plateau. Gondwana Research, 2014, 26, 1028-1050.	6.0	45
58	Latest Triassic marine Sr isotopic variations, possible causes and implications. Terra Nova, 2012, 24, 130-135.	2.1	44
59	Geochemistry and tectonic evolution of the Late Cretaceous Gogher–Baft ophiolite, central Iran. Lithos, 2013, 168-169, 33-47.	1.4	44
60	Greater Kerguelen large igneous province reveals no role for Kerguelen mantle plume in the continental breakup of eastern Gondwana. Earth and Planetary Science Letters, 2019, 511, 244-255.	4.4	44
61	Geology, Geochronology, and Hf and Pb Isotope Data of the Raul-Condestable Iron Oxide-Copper-Gold Deposit, Central Coast of Peru. Economic Geology, 2006, 101, 281-310.	3.8	43
62	MESOZOIC Mo MINERALIZATION IN NORTHEASTERN CHINA DID NOT REQUIRE REGIONAL-SCALE PRE-ENRICHMENT. Economic Geology, 0, , .	3.8	42
63	30 Myr of Cenozoic magmatism along the Tethyan margin during Arabia–Eurasia accretionary orogenesis (Meghri–Ordubad pluton, southernmost Lesser Caucasus). Lithos, 2017, 288-289, 108-124.	1.4	41
64	Contamination of houses by workers occupationally exposed in a lead-zinc-copper mine and impact on blood lead concentrations in the families Occupational and Environmental Medicine, 1997, 54, 117-124.	2.8	39
65	Gradual changes in upwelled seawater conditions (redox, pH) from the late Cretaceous through early Paleogene at the northwest coast of Africa: Negative Ce anomaly trend recorded in fossil bio-apatite. Chemical Geology, 2016, 421, 44-54.	3.3	39
66	Geochemical Constraints Provided by the Freetown Layered Complex (Sierra Leone) on the Origin of High-Ti Tholeiitic CAMP Magmas. Journal of Petrology, 2017, 58, 1811-1840.	2.8	39
67	Late Cretaceous porphyry Cu and epithermal Cu–Au association in the Southern Panagyurishte District, Bulgaria: the paired Vlaykov Vruh and Elshitsa deposits. Mineralium Deposita, 2009, 44, 611-646.	4.1	36
68	Chlorine stable isotope variations across the Quaternary volcanic arc of Ecuador. Earth and Planetary Science Letters, 2014, 396, 22-33.	4.4	33
69	Miocene phosphate-rich sediments in Salento (southern Italy). Sedimentary Geology, 2015, 327, 55-71.	2.1	32
70	Separate lead isotope analyses of leachate and residue rock fractions: implications for metal source tracing in ore deposit studies. Mineralium Deposita, 2003, 38, 185-195.	4.1	31
71	Metallogenic features of Miocene porphyry Cu and porphyry-related mineral deposits in Ecuador revealed by Re-Os, 40Ar/39Ar, and U-Pb geochronology. Mineralium Deposita, 2012, 47, 383-410.	4.1	31
72	Primary Magmas in Continental Arcs and their Differentiated Products: Petrology of a Post-plutonic Dyke Suite in the Tertiary Adamello Batholith (Alps). Journal of Petrology, 2016, 57, 495-534.	2.8	31

#	Article	IF	CITATIONS
73	Geochemical and petrological aspects of dike intrusions in the Lycian ophiolites (SW Turkey): a case study for the dike emplacement along the Tauride Belt Ophiolites. International Journal of Earth Sciences, 2008, 97, 1151-1164.	1.8	30

Quaternary Sanukitoid-like Andesites Generated by Intracrustal Processes (Chacana Caldera Complex,) Tj ETQq0 0 0 grgBT /Overlock 10 1

75	Fluid mixing in orogenic gold deposits: Evidence from the H-O-Sr isotope composition of the Val-d'Or vein field (Abitibi, Canada). Chemical Geology, 2016, 437, 7-18.	3.3	29
76	Magmatic sulphides in Quaternary Ecuadorian arc magmas. Lithos, 2018, 296-299, 580-599.	1.4	29
77	Geochemical and Sr–Nd–Pb–O isotope composition of granitoids of the Early Cretaceous Copiapó plutonic complex (27°30′S), Chile. Journal of South American Earth Sciences, 2003, 16, 381-398.	1.4	28

78 Magmatic-dominated fluid evolution in the Jurassic Nambija gold skarn deposits (southeastern) Tj ETQq0 0 0 rgBT /Qyerlock 10 Tf 50 54

79	The Yanaurcu volcano (Western Cordillera, Ecuador): A field, petrographic, geochemical, isotopic and geochronological study. Lithos, 2015, 218-219, 37-53.	1.4	28
80	Petroleum as source and carrier of metals in epigenetic sediment-hosted mineralization. Scientific Reports, 2019, 9, 8283.	3.3	28
81	Petrological Evolution of the Magmatic Suite Associated with the Coroccohuayco Cu(–Au–Fe) Porphyry–Skarn Deposit, Peru. Journal of Petrology, 2015, 56, 1829-1862.	2.8	27
82	Redox state of southern Tibetan upper mantle and ultrapotassic magmas. Geology, 2020, 48, 733-736.	4.4	27
83	The Eastern Makran Ophiolite (SE Iran): evidence for a Late Cretaceous fore-arc oceanic crust. International Geology Review, 2019, 61, 1313-1339.	2.1	26
84	The Altar Porphyry Cu-(Au-Mo) Deposit (Argentina): A Complex Magmatic-Hydrothermal System with Evidence of Recharge Processes. Economic Geology, 2014, 109, 621-641.	3.8	25
85	Jurassic metabasic rocks in the Kızılırmak accretionary complex (Kargı region, Central Pontides,) Tj ETQq1	1 0.78431 2.2	14.rgBT /0
85	Jurassic metabasic rocks in the Kızılırmak accretionary complex (Kargı region, Central Pontides,) Tj ETQq1 Effects of aseismic ridge subduction on the geochemistry of frontal arc magmas. Earth and Planetary Science Letters, 2020, 531, 115984.	1.0.78433 2.2	14.rgBT /0 25
85 86 87	Jurassic metabasic rocks in the Kızılırmak accretionary complex (Kargı region, Central Pontides,) Tj ETQq1 Effects of aseismic ridge subduction on the geochemistry of frontal arc magmas. Earth and Planetary Science Letters, 2020, 531, 115984. Gas-to-particle conversion of mercury, arsenic and selenium through reactions with traffic-related compounds? Indications from lead isotopes. Atmospheric Environment, 2000, 34, 327-332.	1.0.78433 4.4 4.1	145gBT /C 25 24
85 86 87 88	Jurassic metabasic rocks in the Kızılırmak accretionary complex (Kargı region, Central Pontides,) Tj ETQq1 Effects of aseismic ridge subduction on the geochemistry of frontal arc magmas. Earth and Planetary Science Letters, 2020, 531, 115984. Gas-to-particle conversion of mercury, arsenic and selenium through reactions with traffic-related compounds? Indications from lead isotopes. Atmospheric Environment, 2000, 34, 327-332. Radiogenic Lead Signatures in Au-Rich Volcanic-Hosted Massive Sulfide Ores and Associated Volcanic Rocks of the Early Tertiary Macuchi Island Arc (Western Cordillera of Ecuador). Economic Geology, 2001, 96, 1361-1378.	1.0.78433 4.4 4.1 3.8	145gBT /C 25 24 24
85 86 87 888 89	Jurassic metabasic rocks in the Kızılırmak accretionary complex (Kargı region, Central Pontides,) Tj ETQq1 Effects of aseismic ridge subduction on the geochemistry of frontal arc magmas. Earth and Planetary Science Letters, 2020, 531, 115984. Gas-to-particle conversion of mercury, arsenic and selenium through reactions with traffic-related compounds? Indications from lead isotopes. Atmospheric Environment, 2000, 34, 327-332. Radiogenic Lead Signatures in Au-Rich Volcanic-Hosted Massive Sulfide Ores and Associated Volcanic Rocks of the Early Tertiary Macuchi Island Arc(Western Cordillera of Ecuador). Economic Geology, 2001, 96, 1361-1378. Implications of Pb isotope signatures of rocks and iron oxide Cu-Au ores in the Candelaria-Punta del Cobre district, Chile. Mineralium Deposita, 2003, 38, 900-912.	1.0.78433 4.4 4.1 3.8 4.1	25 24 24 24 24

#	Article	IF	CITATIONS
91	How Much Water in Basaltic Melts Parental to Porphyry Copper Deposits?. Frontiers in Earth Science, 2020, 8, .	1.8	24
92	A refined genetic model for the Laisvall and Vassbo Mississippi Valley-type sandstone-hosted deposits, Sweden: constraints from paragenetic studies, organic geochemistry, and S, C, N, and Sr isotope data. Mineralium Deposita, 2016, 51, 639-664.	4.1	23
93	Post-collisional magmatism and ore-forming systems in the Menderes massif: new constraints from the Miocene porphyry Mo–Cu Pınarbağı system, Gediz–Kütahya, western Turkey. Mineralium Deposita 2017, 52, 1157-1178.	a ,4.1	23
94	Ophiolitic Remnants from the Upper and Intermediate Structural Unit of the Attic-Cycladic Crystalline Belt (Aegean, Greece): Fingerprinting Geochemical Affinities of Magmatic Precursors. Geosciences (Switzerland), 2017, 7, 14.	2.2	23
95	Early Late Permian coupled carbon and strontium isotope chemostratigraphy from South China: Extended Emeishan volcanism?. Gondwana Research, 2018, 58, 58-70.	6.0	23
96	Metal Sources in Mineral Deposits and Crustal Rocks of Ecuador (1° N–4° S): A Lead Isotope Synthesis. Economic Geology, 2004, 99, 1085-1106.	3.8	22
97	Geochemistry, tectonics, and crustal evolution of basement rocks in the Eastern Rhodope Massif, Bulgaria. International Geology Review, 2010, 52, 269-297.	2.1	22
98	Petrology of the Miocene igneous rocks in the Altar region, main Cordillera of San Juan, Argentina. A geodynamic model within the context of the Andean flat-slab segment and metallogenesis. Journal of South American Earth Sciences, 2011, 32, 30-48.	1.4	22
99	Magmatic sulfides in high-potassium calc-alkaline to shoshonitic and alkaline rocks. Solid Earth, 2020, 11, 1-21.	2.8	22
100	The Gondwanan margin in West Antarctica: Insights from Late Triassic magmatism of the Antarctic Peninsula. Gondwana Research, 2020, 81, 1-20.	6.0	22
101	The efficiency of removal of lead and other elements from domestic drinking waters using a bench-top water filter system. Science of the Total Environment, 1997, 196, 205-216.	8.0	21
102	Lead isotope systematics of Late Cretaceous - Tertiary Andean arc magmas and associated ores between 8°N and 40°S: evidence for latitudinal mantle heterogeneity beneath the Andes. Terra Nova, 2002, 14, 337-342.	2.1	21
103	Discovery of Miocene to early Pleistocene deposits on Mayaguana, Bahamas: Evidence for recent active tectonism on the North American margin. Geology, 2011, 39, 523-526.	4.4	21
104	Origin of widespread Cretaceous alkaline magmatism in the Central Atlantic: A single melting anomaly?. Lithos, 2019, 342-343, 480-498.	1.4	21
105	Metal Sources in Mineral Deposits and Crustal Rocks of Ecuador (1Â N-4Â S):A Lead Isotope Synthesis. Economic Geology, 2004, 99, 1085-1106.	3.8	21
106	Petrogenetic Evolution of Arc Magmatism Associated with Late Oligocene to Late Miocene Porphyry-Related Ore Deposits in Ecuador. Economic Geology, 2010, 105, 1243-1270.	3.8	19
107	Insights into the petrogenesis of low- and high-Ti basalts: Stratigraphy and geochemistry of four lava sequences from the central ParanÃ; basin. Journal of Volcanology and Geothermal Research, 2018, 355, 232-252.	2.1	19
108	Petrogenesis of tholeiitic basalts from the Central Atlantic magmatic province as revealed by mineral major and trace elements and Sr isotopes. Lithos, 2014, 188, 44-59.	1.4	18

#	Article	IF	CITATIONS
109	A Middle Ordovician Age for the Laisvall Sandstone-Hosted Pb-Zn Deposit, Sweden: A Response to Early Caledonian Orogenic Activity. Economic Geology, 2015, 110, 1779-1801.	3.8	18
110	Triassic magmatism in the European Southern Alps as an early phase of Pangea break-up. Geological Magazine, 2020, 157, 1800-1822.	1.5	18
111	Timing and metal sources for carbonate-hosted Zn-Pb mineralization in the Franklinian Basin (North) Tj ETQq1	1 0.784314 2.7	rgBT /Overlo
112	THE EVOLUTION OF TUNGSTEN SOURCES IN CRUSTAL MINERALIZATION FROM ARCHEAN TO TERTIARY INFERRED FROM LEAD ISOTOPES. Economic Geology, 2003, 98, 1039-1045.	3.8	16
113	Radiogenic isotopes for deciphering terrigenous input provenance in the western Mediterranean. Chemical Geology, 2015, 410, 237-250.	3.3	16
114	Quantification of tsunami-induced flows on a Mediterranean carbonate ramp reveals catastrophic evolution. Earth and Planetary Science Letters, 2016, 444, 192-204.	4.4	16
115	A revised interpretation of the Chon Aike magmatic province: Active margin origin and implications for the opening of the Weddell Sea. Lithos, 2021, 386-387, 106013.	1.4	16
116	Formation and evolution processes of the Salanfe W–Au–As-skarns (Aiguilles Rouges Massif, western) Tj	ETQqQ 0 0 rg	gBT_/Overlock
117	Ceologic Setting, Mineralogy, and Geochemistry of the Early Tertiary Au-Rich Volcanic-Hosted Massive Sulfide Deposit of La Plata, Western Cordillera, Ecuador. Economic Geology, 2008, 103, 161-183.	3.8	14
118	Origin of Early Carboniferous pseudoâ€adakites in northern Brittany (France) through massive amphibole fractionation from hydrous basalt. Terra Nova, 2011, 23, 1-10.	2.1	14
119	New insights into petrogenesis of Miocene magmatism associated with porphyry copper deposits of the Andean Pampean flat slab, Argentina. Geoscience Frontiers, 2018, 9, 1565-1576.	8.4	14
120	Mineral zoning and gold occurrence in the Fortuna skarn mine, Nambija district, Ecuador. Mineralium Deposita, 2006, 41, 301-321.	4.1	13
121	Petrology and geochemistry of the Karaj Dam basement sill: Implications for geodynamic evolution of the Alborz magmatic belt. Chemie Der Erde, 2015, 75, 237-260.	2.0	13
122	Young Silicic Magmatism of the Greater Caucasus, Russia, with implication for its delamination origin based on zircon petrochronology and thermomechanical modeling. Journal of Volcanology and Geothermal Research, 2021, 412, 107173.	2.1	13
123	Pulsed exsolution of magmatic ore-forming fluids in tin-tungsten systems: a SIMS cassiterite oxygen isotope record. Mineralium Deposita, 2022, 57, 343-352.	4.1	13
124	Experimental anatexis, fluorine geochemistry and lead-isotope constraints on granite petrogenesis in the SeridÃ ³ Belt, Borborema Province, northeastern Brazil. Chemical Geology, 2015, 400, 122-148.	3.3	12
125	Supergiant porphyry copper deposits are failed large eruptions. Communications Earth & Environment, 2022, 3, .	6.8	12
126	Multi-proxy isotopic tracing of magmatic sources and crustal recycling in the Palaeozoic to Early Jurassic active margin of North-Western Gondwana. Gondwana Research, 2019, 66, 227-245.	6.0	11

#	Article	IF	CITATIONS
127	The paleozoic Jalal Abad mafic complex (Central Iran): Implication for the petrogenesis. Chemie Der Erde, 2020, 80, 125597.	2.0	11
128	Characterization of Modern and Fossil Mineral Dust Transported to High Altitude in the Western Alps: Saharan Sources and Transport Patterns. Advances in Meteorology, 2012, 2012, 1-14.	1.6	10
129	Geochemical, mineralogical and Re-Os isotopic constraints on the origin of Tethyan oceanic mantle and crustal rocks from the Central Pontides, northern Turkey. Mineralogy and Petrology, 2018, 112, 25-44.	1.1	10
130	Origin and age of carbonate clasts from the Lusi eruption, Java, Indonesia. Marine and Petroleum Geology, 2018, 90, 138-148.	3.3	10
131	Primary hydrous minerals from the Karoo LIP magmas: Evidence for a hydrated source component. Earth and Planetary Science Letters, 2018, 503, 181-193.	4.4	10
132	Ore Formation During Jurassic Subduction of the Tethys Along the Eurasian Margin: Constraints from the Kapan District, Lesser Caucasus, Southern Armenia. Economic Geology, 2019, 114, 1251-1284.	3.8	10
133	Genesis of the Au–Bi–Cu–As, Cu–Mo ± W, and base–metal Au–Ag mineralization at the N Freegold (Yukon, Canada): constraints from Ar–Ar and Re–Os geochronology and Pb and stable isotope compositions. Mineralium Deposita, 2013, 48, 991-1017.	lountain 4.1	9
134	Impact on the environment from steel bridge paint deterioration using lead isotopic tracing, paint compositions and soil deconstruction. Science of the Total Environment, 2016, 550, 69-72.	8.0	9
135	The Kalkarindji Large Igneous Province, Australia: Petrogenesis of the Oldest and Most Compositionally Homogenous Province of the Phanerozoic. Journal of Petrology, 2018, 59, 635-665.	2.8	9
136	At the crossroads of the Lesser Caucasus and the Eastern Pontides: Late Cretaceous to early Eocene magmatic and geodynamic evolution of the Bolnisi district, Georgia. Lithos, 2020, 378-379, 105872.	1.4	9
137	The Paleogene ophiolite conundrum of the Iran–Iraq border region. Journal of the Geological Society, 2020, 177, 955-964.	2.1	9
138	Enrichment Nature of Ultrapotassic Rocks in Southern Tibet Inherited from their Mantle Source. Journal of Petrology, 2021, 62, .	2.8	9
139	Geochemistry and isotope composition (Sr, Pb, Î′66Zn) of Vulcano fumaroles (Aeolian Islands, Italy). Chemical Geology, 2018, 493, 153-171.	3.3	8
140	Detrital zircon age and Sr isotopic constraints for a Late Palaeozoic carbonate platform in the lower Rhodope thrust system, Pirin, SW Bulgaria. Geological Magazine, 2019, 156, 2117-2124.	1.5	8
141	Metal Sources in Mineral Deposits and Crustal Rocks of Ecuador (1Â N-4Â S): A Lead Isotope Synthesis. Economic Geology, 2004, 99, 1085-1106.	3.8	8
142	Formation and age of sphalerite mineralization in carbonate rocks of Bajocian age in the Swiss Jura Mountains: evidence of Mesozoic hydrothermal activity. International Journal of Earth Sciences, 2014, 103, 1059-1082.	1.8	6
143	Polyphase vein mineralization in the Fennoscandian Shield at Ãkerlandet, Jävsand, and Laisvall along the erosional front of the Caledonian orogen, Sweden. Mineralium Deposita, 2017, 52, 823-844.	4.1	6
144	Insights into the genesis of the epithermal Au-Ag mineralization at Rio Blanco in the Cordillera Occidental of southwestern Ecuador: Constraints from U-Pb and Ar/Ar geochronology. Journal of South American Earth Sciences, 2017, 80, 353-374.	1.4	6

#	Article	IF	CITATIONS
145	Jurassic ore-forming systems during the Tethyan orogeny: constraints from the Shamlugh deposit, Alaverdi district, Armenia, Lesser Caucasus. Mineralium Deposita, 2019, 54, 1011-1032.	4.1	6
146	The Misery Point cliff, Mayaguana Island, SE Bahamas: a unique record of sea-level highstands since the Early Pleistocene. Swiss Journal of Geosciences, 2019, 112, 287-305.	1.2	6
147	Permian post-collisional basic magmatism from Corsica to the Southeastern Alps. Lithos, 2020, 376-377, 105733.	1.4	6
148	The Middle-Late Cretaceous Zagros ophiolites, Iran: Linking of a 3000 km swath of subduction initiation fore-arc lithosphere from Troodos, Cyprus to Oman. Bulletin of the Geological Society of America, 0, , .	3.3	6
149	The upper Oligocene San Rafael intrusive complex (Eastern Cordillera, southeast Peru), host of the largest-known high-grade tin deposit. Lithos, 2021, 400-401, 106409.	1.4	6
150	Arabia-Eurasia convergence and collision control on Cenozoic juvenile K-rich magmatism in the South Armenian block, Lesser Caucasus. Earth-Science Reviews, 2022, 226, 103949.	9.1	6
151	Cratonic keels controlled the emplacement of the Central Atlantic Magmatic Province (CAMP). Earth and Planetary Science Letters, 2022, 584, 117480.	4.4	6
152	Spatio-temporal Geochemical Evolution of the SE Australian Upper Mantle Deciphered from the Sr, Nd and Pb Isotope Compositions of Cenozoic Intraplate Volcanic Rocks. Journal of Petrology, 2016, , egw048.	2.8	5
153	Petrogenesis of the Rio Blanco epithermal Au-Ag mineralization in the Cordillera Occidental of southwestern Ecuador: Assessment from host rocks petrochemistry and ore constituents isotopic (O, S, H, and Pb) compositions. Journal of South American Earth Sciences, 2018, 86, 70-93.	1.4	5
154	Origin of geochemically heterogeneous mid-ocean ridge basalts from the Macquarie Ridge Complex, SW Pacific. Lithos, 2021, 380-381, 105893.	1.4	5
155	Late Cretaceous felsic intrusions in oceanic plateau basalts in SW Ecuador: Markers of subduction initiation?. Journal of South American Earth Sciences, 2021, 110, 103348.	1.4	5
156	Reassessing the intrusive tempo and magma genesis of the late Variscan Aar batholith: U–Pb geochronology, trace element and initial Hf isotope composition of zircon. Swiss Journal of Geosciences, 2022, 115, .	1.2	5
157	Petrogenesis of Quebrada de la Mina and Altar North porphyries (Cordillera of San Juan, Argentina): Crustal assimilation and metallogenic implications. Geoscience Frontiers, 2017, 8, 1135-1159.	8.4	4
158	High-resolution compositional analysis of a fluvial-fan succession: The Miocene infill of the Cacheuta Basin (central Argentinian foreland). Sedimentary Geology, 2018, 375, 268-288.	2.1	4
159	HT–LP crustal syntectonic anatexis as a source of the Permian magmatism in the Eastern Southern Alps: evidence from xenoliths in the Euganean trachytes (NE Italy). Journal of the Geological Society, 2020, 177, 1211-1230.	2.1	4
160	Data on the arc magmatism developed in the Antarctic Peninsula and Patagonia during the Late Triassic–Jurassic: A compilation of new and previous geochronology, geochemistry and isotopic tracing results. Data in Brief, 2021, 36, 107042.	1.0	4
161	Zinc systematics quantify crustal thickness control on fractionating assemblages of arc magmas. Scientific Reports, 2021, 11, 14667.	3.3	4
162	Trace element and oxygen isotope study of eclogites and associated rocks from the Münchberg Massif (Germany) with implications on the protolith origin and fluid-rock interactions. Chemical Geology, 2021, 579, 120352.	3.3	4

0

#	Article	IF	CITATIONS
163	Deep to Shallow Sulfide Saturation at Nisyros Active Volcano. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	4
164	Zircon U-Pb, geochemical and isotopic constraints on the age and origin of A- and I-type granites and gabbro-diorites from NW Iran. Lithos, 2020, 374-375, 105688.	1.4	3
165	A genetic link between albitic magmas and IOCG mineralization in the Ossa Morena Zone (SW Iberia). Journal of Iberian Geology, 2021, 47, 85-119.	1.3	3
166	Geochemical and isotopic variations in a frontal arc volcanic cluster (Chachimbiro-Pulumbura-Pilavo-Yanaurcu, Ecuador). Chemical Geology, 2021, 574, 120240.	3.3	3
167	Mass Spectrometry in Earth Sciences: The Precise and Accurate Measurement of Time. Chimia, 2014, 68, 124-128.	0.6	2
168	Geochemical evolution of the Quaternary Chachimbiro Volcanic Complex (frontal volcanic arc of) Tj ETQq0 0 0 rg	BT /Overlc 1.4	ock 10 Tf 50
169	Geochronology and geochemistry data for the Elbrus, Tyrnyauz, and Chegem magmatic centers, Greater Caucasus, Russia. Data in Brief, 2021, 35, 106896.	1.0	2
170	T-P-fO2 conditions of sulfide saturation in magmatic enclaves and their host lavas. Lithos, 2021, 398-399, 106313.	1.4	2
171	Multi-method approach to understanding the migration mechanisms of Pb in apatite and Ar in alkali feldspar from Proterozoic granitic batholiths from the Mt. Isa Inlier (Australia). , 2021, , .		2
172	End-Triassic Extinction in a Carbonate Platform From Western Tethys: A Comparison Between Extinction Trends and Geochemical Variations. Frontiers in Earth Science, 2022, 10, .	1.8	2
173	Monitoring steel bridge renovation using lead isotopic tracing. Chemosphere, 2017, 174, 260-267.	8.2	1
174	Zircon Petrochronology of the Kişladaǧ Porphyry Au Deposit (Turkey). Economic Geology, 0, , .	3.8	1
175	Crustal architecture studies in the Iranian Cadomian arc: Insights into source, timing and metallogeny. Ore Geology Reviews, 2021, 136, 104280.	2.7	1
176	Chapter 23: Alteration, Mineralization, and Age Relationships at the Kışladağ Porphyry Gold Deposit, Turkey. , 2020, , 467-495.		1
177	Strontium isotopes reveal Early Devonian to Middle Triassic carbonate sedimentation in the Sakar-Strandzha Zone, SE Bulgaria. International Journal of Earth Sciences, 0, , 1.	1.8	1
178	Reply to Discussion on ?Formation and evolution processes of the Salanfe W-Au-As-skarns (Aiguilles) Tj ETQq0 0 (Deposita, 2004, 39, 399-401.) rgBT /Ov 4.1	verlock 10 Tf O
179	THE HIGH-TI CAMP FREETOWN LAYERED COMPLEX (SIERRA LEONE) - LITHOSPHERIC IMPRINTING REVEALED BY ISOTOPE SYSTEMATICS. , 2017, , .		0

180 The Ferrar Continental Flood Basalt: A ~1.6 Ma Long Duration Evidenced by High-Precision 40Ar/39Ar Ages. , 2020, , .

#	Article	IF	CITATIONS
181	Dissolution of sulfide-rich cumulates in Nisyros volcano. , 2021, , .		0
182	Iron isotope compositions of subduction-derived rocks: Insights from eclogites and metasediments of the Münchberg Massif (Germany). Chemical Geology, 2022, 602, 120899.	3.3	0