
Gaosheng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9546406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-step purification of electrolytic manganese residue leachate using hydroxide sedimentation, struvite precipitation, chlorination and coagulation: Advanced removal of manganese, ammonium, and phosphate. Science of the Total Environment, 2022, 805, 150237.	8.0	32
2	Uptake, organ distribution and health risk assessment of potentially toxic elements in crops in abandoned indigenous smelting region. Chemosphere, 2022, 292, 133321.	8.2	22
3	Highly efficient removal of thallium(I) by facilely fabricated amorphous titanium dioxide from water and wastewater. Scientific Reports, 2022, 12, 72.	3.3	3
4	Magnetite-based Biochar Coupled with Binary Oxidants for the Effective Removal of Mixed Dye from Wastewater. Fibers and Polymers, 2022, 23, 450-462.	2.1	6
5	Facile synthesis of novel tremella-like Mn0@Mn2O3 and its exceptional performance on removal of phosphate. Journal of Environmental Chemical Engineering, 2021, 9, 105635.	6.7	4
6	Efficient Sorption of Arsenic on Nanostructured Fe-Cu Binary Oxides: Influence of Structure and Crystallinity. Frontiers in Chemistry, 2021, 9, 840446.	3.6	2
7	Polyvinyl alcohol-stabilized granular Fe–Mn binary oxide as an effective adsorbent for simultaneous removal of arsenate and arsenite. Environmental Technology (United Kingdom), 2020, 41, 2564-2574.	2.2	6
8	Enhanced thallium(I) removal from wastewater using hypochlorite oxidation coupled with magnetite-based biochar adsorption. Science of the Total Environment, 2020, 698, 134166.	8.0	67
9	Highly efficient removal of thallium(I) from wastewater via hypochlorite catalytic oxidation coupled with adsorption by hydrochar coated nickel ferrite composite. Journal of Hazardous Materials, 2020, 388, 122016.	12.4	27
10	Zero-valent iron-manganese bimetallic nanocomposites catalyze hypochlorite for enhanced thallium(I) oxidation and removal from wastewater: Materials characterization, process optimization and removal mechanisms. Journal of Hazardous Materials, 2020, 386, 121900.	12.4	43
11	Hyperaccumulation and transport mechanism of thallium and arsenic in brake ferns (Pteris vittata L.): A case study from mining area. Journal of Hazardous Materials, 2020, 388, 121756.	12.4	58
12	Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	6.0	29
13	Efficient arsenic(III) removal from aqueous solution by a novel nanostructured iron-copper-manganese trimetal oxide. Journal of Molecular Liquids, 2020, 309, 112993.	4.9	23
14	Novel nanostructured Fe–Cu–Al trimetal oxide for enhanced antimony(V) removal: synthesis, characterization and performance. Water Science and Technology, 2019, 79, 1995-2004.	2.5	5
15	Synthesis of manganese dioxide with different morphologies for thallium removal from wastewater. Journal of Environmental Management, 2019, 251, 109563.	7.8	42
16	Biochar derived from watermelon rinds as regenerable adsorbent for efficient removal of thallium(I) from wastewater. Chemical Engineering Research and Design, 2019, 127, 257-266.	5.6	76
17	A novel nanostructured Fe-Ti-Mn composite oxide for highly efficient arsenic removal: Preparation and performance evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 364-372.	4.7	48
18	Efficient oxidation and sorption of arsenite using a novel titanium(IV)-manganese(IV) binary oxide sorbent. Journal of Hazardous Materials, 2018, 353, 410-420.	12.4	59

GAOSHENG ZHANG

#	Article	IF	CITATIONS
19	Comparing adsorption of arsenic and antimony from single-solute and bi-solute aqueous systems onto ZIF-8. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 164-172.	4.7	50
20	Facile fabrication of nanostructured cerium-manganese binary oxide for enhanced arsenite removal from water. Chemical Engineering Journal, 2018, 334, 1518-1526.	12.7	104
21	Superior adsorption of thallium(I) on titanium peroxide: Performance and mechanism. Chemical Engineering Journal, 2018, 331, 471-479.	12.7	110
22	Enhanced removal of arsenite and arsenate by a multifunctional Fe-Ti-Mn composite oxide: Photooxidation, oxidation and adsorption. Water Research, 2018, 147, 264-275.	11.3	129
23	Removal and recovery of thallium from aqueous solutions via a magnetite-mediated reversible adsorption-desorption process. Journal of Cleaner Production, 2018, 199, 705-715.	9.3	72
24	Efficient removal of thallium(I) from wastewater using flower-like manganese dioxide coated magnetic pyrite cinder. Chemical Engineering Journal, 2018, 353, 867-877.	12.7	90
25	Removal of thallium from wastewater by a combination of persulfate oxidation and iron coagulation. Chemical Engineering Research and Design, 2018, 119, 340-349.	5.6	38
26	Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn-Pb mine district in southern China. Environmental Monitoring and Assessment, 2016, 188, 413.	2.7	40
27	Efficient removal of arsenic from water using a granular adsorbent: Fe–Mn binary oxide impregnated chitosan bead. Bioresource Technology, 2015, 193, 243-249.	9.6	135
28	Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465, 67-76.	4.7	429
29	The ammonia effects to the habitat requirements and adaptability of <i>Daphnia magna</i> . Desalination and Water Treatment, 2014, 52, 2695-2699.	1.0	6
30	Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)–copper(II) binary oxides. Chemical Engineering Journal, 2014, 235, 124-131.	12.7	164
31	Enhanced arsenate removal by novel Fe–La composite (hydr)oxides synthesized via coprecipitation. Chemical Engineering Journal, 2014, 251, 69-79.	12.7	77
32	Novel Core–Shell Structured Mn–Fe/MnO ₂ Magnetic Nanoparticles for Enhanced Pb(II) Removal from Aqueous Solution. Industrial & Engineering Chemistry Research, 2014, 53, 18481-18488.	3.7	33
33	Respective Role of Fe and Mn Oxide Contents for Arsenic Sorption in Iron and Manganese Binary Oxide: An X-ray Absorption Spectroscopy Investigation. Environmental Science & Technology, 2014, 48, 10316-10322.	10.0	200
34	Organochlorine pesticide contamination in marine organisms of Yantai coast, northern Yellow Sea of China. Environmental Monitoring and Assessment, 2014, 186, 1561-1568.	2.7	10
35	Polybrominated Diphenyl Ethers Contamination in Marine Organisms of Yantai Coast, Northern Yellow Sea of China. Bulletin of Environmental Contamination and Toxicology, 2013, 90, 679-683.	2.7	3
36	Simultaneous removal of arsenate and arsenite by a nanostructured zirconium–manganese binary hydrous oxide: Behavior and mechanism. Journal of Colloid and Interface Science, 2013, 397, 137-143.	9.4	68

GAOSHENG ZHANG

#	Article	IF	CITATIONS
37	Modeling macrozooplankton and water quality relationships after wetland construction in the Wenyuhe River Basin, China. Ecological Modelling, 2013, 252, 97-105.	2.5	7
38	Nanostructured iron(III)-copper(II) binary oxide: A novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Research, 2013, 47, 4022-4031.	11.3	290
39	Adsorption of Phosphate from Aqueous Solution Using an Iron–Zirconium Binary Oxide Sorbent. Water, Air, and Soil Pollution, 2012, 223, 4221-4231.	2.4	101
40	Heavy metal contamination in the marine organisms in Yantai coast, northern Yellow Sea of China. Ecotoxicology, 2012, 21, 1726-1733.	2.4	54
41	Evidence for the Stepwise Behavioral Response Model (SBRM): The effects of Carbamate Pesticides on medaka (Oryzias latipes) in an online monitoring system. Chemosphere, 2012, 87, 734-741.	8.2	27
42	Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe–Mn binary oxides: Influence of Mn/Fe ratio, pH, Ca2+, and humic acid. Journal of Colloid and Interface Science, 2012, 366, 141-146.	9.4	108
43	Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal. Materials Chemistry and Physics, 2012, 135, 16-24.	4.0	175
44	Improvement of Biological Early Warning System Based on Medaka (<i>Oryzias latipes</i>) Behavioral Responses to Physiochemical Factors. Journal of Biobased Materials and Bioenergy, 2012, 6, 678-681.	0.3	5
45	Adsorptive removal of arsenic from water by an iron–zirconium binary oxide adsorbent. Journal of Colloid and Interface Science, 2011, 358, 230-237.	9.4	236
46	A new online monitoring and management system for accidental pollution events developed for the regional water basin in Ningbo, China. Water Science and Technology, 2011, 64, 1828-1834.	2.5	9
47	Adsorption behavior and mechanism of arsenate at Fe–Mn binary oxide/water interface. Journal of Hazardous Materials, 2009, 168, 820-825.	12.4	194
48	Removal of phosphate from water by a Fe–Mn binary oxide adsorbent. Journal of Colloid and Interface Science, 2009, 335, 168-174.	9.4	356
49	Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Research, 2007, 41, 1921-1928.	11.3	538
50	CuFe2O4/activated carbon composite: A novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere, 2007, 68, 1058-1066.	8.2	270
51	Silicate Hindering In Situ Formed Ferric Hydroxide Precipitation: Inhibiting Arsenic Removal from Water. Environmental Engineering Science, 2007, 24, 707-715.	1.6	20
52	Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresource Technology, 2004, 91, 189-193.	9.6	181