Natrayasamy Viswanathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9545700/publications.pdf

Version: 2024-02-01

91 papers 4,791 citations

38 h-index 98622 67 g-index

92 all docs 92 docs citations

times ranked

92

2857 citing authors

#	Article	IF	CITATIONS
1	Identification of selective ion-exchange resin for fluoride sorption. Journal of Colloid and Interface Science, 2007, 308, 438-450.	5.0	411
2	Defluoridation chemistry of synthetic hydroxyapatite at nano scale: Equilibrium and kinetic studies. Journal of Hazardous Materials, 2008, 155, 206-215.	6.5	252
3	Removal of fluoride from aqueous solution using protonated chitosan beads. Journal of Hazardous Materials, 2009, 161, 423-430.	6. 5	200
4	Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite. Bioresource Technology, 2008, 99, 8226-8230.	4.8	190
5	Enhanced fluoride sorption using La(III) incorporated carboxylated chitosan beads. Journal of Colloid and Interface Science, 2008, 322, 375-383.	5.0	178
6	Defluoridation of water using magnesia/chitosan composite. Journal of Hazardous Materials, 2009, 163, 618-624.	6.5	163
7	Enriched fluoride sorption using alumina/chitosan composite. Journal of Hazardous Materials, 2010, 178, 226-232.	6.5	149
8	Fluoride sorption by nano-hydroxyapatite/chitin composite. Journal of Hazardous Materials, 2009, 172, 147-151.	6.5	131
9	Selective fluoride adsorption by a hydrotalcite/chitosan composite. Applied Clay Science, 2010, 48, 607-611.	2.6	107
10	Synthesis of magnetic alginate hybrid beads for efficient chromium (VI) removal. International Journal of Biological Macromolecules, 2015, 72, 862-867.	3.6	103
11	Preparation and application of alumina/chitosan biocomposite. International Journal of Biological Macromolecules, 2010, 47, 146-154.	3.6	102
12	Development of chitosan supported zirconium(IV) tungstophosphate composite for fluoride removal. Journal of Hazardous Materials, 2010, 176, 459-465.	6.5	101
13	Selective sorption of fluoride using Fe(III) loaded carboxylated chitosan beads. Journal of Fluorine Chemistry, 2008, 129, 503-509.	0.9	98
14	Sorption behaviour of fluoride on carboxylated cross-linked chitosan beads. Colloids and Surfaces B: Biointerfaces, 2009, 68, 48-54.	2.5	95
15	Role of metal ion incorporation in ion exchange resin on the selectivity of fluoride. Journal of Hazardous Materials, 2009, 162, 920-930.	6.5	95
16	Synthesis of alginate bioencapsulated nano-hydroxyapatite composite for selective fluoride sorption. Carbohydrate Polymers, 2014, 112, 662-667.	5.1	92
17	Sorption behaviour of copper on chemically modified chitosan beads from aqueous solution. Carbohydrate Polymers, 2011, 83, 1082-1087.	5.1	84
18	Development and Reuse of Amine-Grafted Chitosan Hybrid Beads in the Retention of Nitrate and Phosphate. Journal of Chemical & Engineering Data, 2018, 63, 147-158.	1.0	83

#	Article	lF	Citations
19	Fabrication of magnetic particles imprinted cellulose based biocomposites for chromium(VI) removal. Carbohydrate Polymers, 2017, 174, 352-359.	5.1	71
20	Synthesis of Zr(IV) entrapped chitosan polymeric matrix for selective fluoride sorption. Colloids and Surfaces B: Biointerfaces, 2009, 72, 88-93.	2.5	67
21	Development of multivalent metal ions imprinted chitosan biocomposites for phosphate sorption. International Journal of Biological Macromolecules, 2017, 104, 1539-1547.	3.6	66
22	Fabrication of metal ions cross-linked alginate assisted biocomposite beads for selective phosphate removal. Journal of Environmental Chemical Engineering, 2017, 5, 1438-1446.	3.3	61
23	Design and development of amine functionalized iron based metal organic frameworks for selective fluoride removal from water environment. Journal of Environmental Chemical Engineering, 2021, 9, 104563.	3.3	61
24	Hydrothermal assisted magnetic nano-hydroxyapatite encapsulated alginate beads for efficient Cr(VI) uptake from water. Journal of Environmental Chemical Engineering, 2018, 6, 1443-1454.	3.3	57
25	Development of Nano-Hydroxyapatite Embedded Gelatin Biocomposite for Effective Chromium(VI) Removal. Industrial & Development of Nano-Hydroxyapatite Embedded Gelatin Biocomposite for Effective Chromium(VI) Removal. Industrial & Development of Nano-Hydroxyapatite Embedded Gelatin Biocomposite for Effective Chromium(VI)	1.8	54
26	Design of Amino-Functionalized Benzene-1,4-Dicarboxylic Acid-Fabricated Lanthanum-Based Metal–Organic Frameworks for Defluoridation of Water. Journal of Chemical & Engineering Data, 2020, 65, 5328-5340.	1.0	54
27	Synthesis and applications of eco-magnetic nano-hydroxyapatite chitosan composite for enhanced fluoride sorption. Carbohydrate Polymers, 2015, 134, 732-739.	5.1	53
28	Enhanced defluoridation and facile separation of magnetic nano-hydroxyapatite/alginate composite. International Journal of Biological Macromolecules, 2015, 80, 341-349.	3.6	53
29	Development of Multivalent Metal-Ion-Fabricated Fumaric Acid-Based Metal–Organic Frameworks for Defluoridation of Water. Journal of Chemical & Engineering Data, 2020, 65, 2990-3001.	1.0	53
30	Development of multifunctional chitosan beads for fluoride removal. Journal of Hazardous Materials, 2009, 167, 325-331.	6. 5	51
31	Hydrothermal encapsulation of lanthanum oxide derived Aegle marmelos admixed chitosan bead system for nitrate and phosphate retention. International Journal of Biological Macromolecules, 2019, 130, 527-535.	3.6	50
32	Remediation of fluoride from drinking water using magnetic iron oxide coated hydrotalcite/chitosan composite. International Journal of Biological Macromolecules, 2017, 104, 1569-1577.	3 . 6	49
33	In Situ Fabrication of Magnetic Iron Oxide over Nano-hydroxyapatite Gelatin Eco-polymeric Composite for Defluoridation Studies. Journal of Chemical & Engineering Data, 2016, 61, 571-578.	1.0	48
34	In situ precipitation of nano-hydroxyapatite in gelatin polymatrix towards specific fluoride sorption. International Journal of Biological Macromolecules, 2015, 74, 351-359.	3 . 6	47
35	Facile synthesis of tunable rare earth based metal organic frameworks for enhanced fluoride retention. Journal of Molecular Liquids, 2021, 326, 115163.	2.3	47
36	Effect of metal ion loaded in a resin towards fluoride retention. Journal of Fluorine Chemistry, 2008, 129, 645-653.	0.9	46

#	Article	IF	Citations
37	A novel metal coordination enabled in carboxylated alginic acid for effective fluoride removal. Carbohydrate Polymers, 2015, 118, 242-249.	5.1	41
38	Fabrication of zirconium(IV) cross-linked alginate/kaolin hybrid beads for nitrate and phosphate retention. Arabian Journal of Chemistry, 2020, 13, 4111-4125.	2.3	41
39	Hydrothermal Fabrication of Zirconium Oxyhydroxide Capped Chitosan/Kaolin Framework for Highly Selective Nitrate and Phosphate Retention. Industrial & Engineering Chemistry Research, 2018, 57, 14470-14481.	1.8	38
40	Synthesis of alginate beads filled with nanohydroxyapatite: An efficient approach for fluoride sorption. Journal of Applied Polymer Science, 2015, 132, .	1.3	37
41	Synthesis of assorted metal ions anchored alginate bentonite biocomposites for Cr(VI) sorption. Carbohydrate Polymers, 2016, 151, 1100-1109.	5.1	35
42	Preparation and testing of a tetra-amine copper(II) chitosan bead system for enhanced phosphate remediation. Carbohydrate Polymers, 2018, 183, 173-182.	5.1	35
43	A facile synthesis of metal ion-imprinted graphene oxide/alginate hybrid biopolymeric beads for enhanced fluoride sorption. RSC Advances, 2016, 6, 75905-75915.	1.7	34
44	Fabrication of nano-graphene oxide assisted hydrotalcite/chitosan biocomposite: An efficient adsorbent for chromium removal from water. International Journal of Biological Macromolecules, 2019, 132, 1068-1078.	3.6	34
45	Fabrication of lanthanum linked trimesic acid as porous metal organic frameworks for effective nitrate and phosphate adsorption. Journal of Solid State Chemistry, 2021, 302, 122446.	1.4	34
46	Development and characterization of hydroxyapatite layered lanthanum organic frameworks by template method for defluoridation of water. Journal of Colloid and Interface Science, 2022, 622, 228-238.	5.0	33
47	Preparation and metal uptake studies of modified forms of chitin. International Journal of Biological Macromolecules, 2010, 47, 583-589.	3.6	32
48	One pot synthesis of metal ion anchored alginate–gelatin binary biocomposite for efficient Cr(VI) removal. International Journal of Biological Macromolecules, 2016, 83, 450-459.	3.6	32
49	Synthesis of metal ion entrapped silica gel/chitosan biocomposite for defluoridation studies. International Journal of Biological Macromolecules, 2014, 70, 347-353.	3.6	31
50	A facile synthesis of magnetic particles sprayed gelatin embedded hydrotalcite composite for effective phosphate sorption. Journal of Environmental Chemical Engineering, 2018, 6, 208-217.	3.3	31
51	Hydrothermal synthesis of magnetic iron oxide encrusted hydrocalumite-chitosan composite for defluoridation studies. International Journal of Biological Macromolecules, 2019, 132, 600-605.	3.6	31
52	One pot eco-friendly synthesis of highly dispersed alumina supported alginate biocomposite for efficient chromium(VI) removal. Journal of Water Process Engineering, 2016, 10, 113-119.	2.6	30
53	Hydrothermal synthesis of hydrocalumite assisted biopolymeric hybrid composites for efficient Cr(<scp>vi</scp>) removal from water. New Journal of Chemistry, 2018, 42, 3371-3382.	1.4	29
54	Fabrication of amino functionalized benzene-1,4-dicarboxylic acid facilitated cerium based metal organic frameworks for efficient removal of fluoride from water environment. Environmental Science: Water Research and Technology, 2021, 7, 384-395.	1.2	29

#	Article	IF	Citations
55	Development of amine functionalized co-polymeric resins for selective fluoride sorption. Journal of Fluorine Chemistry, 2013, 153, 143-150.	0.9	28
56	Fabrication of hydroxyapatite embedded cerium-organic frameworks for fluoride capture from water. Journal of Molecular Liquids, 2022, 354, 118830.	2.3	28
57	Hydrothermal Fabrication of Amine-Grafted Magnetic Gelatin Hybrid Composite for Effective Adsorption of Nitrate and Phosphate. Industrial & Engineering Chemistry Research, 2019, 58, 21521-21530.	1.8	27
58	Enhanced and selective fluoride sorption on Ce(III) encapsulated chitosan polymeric matrix. Journal of Applied Polymer Science, 2009, 112, 1114-1121.	1.3	25
59	Synthesis and Characterization of a Few Amino-Functionalized Copolymeric Resins and Their Environmental Applications. Industrial & Engineering Chemistry Research, 2012, 51, 5677-5684.	1.8	24
60	Design and synthesis of amine functionalized graphene oxide for enhanced fluoride removal. Journal of Environmental Chemical Engineering, 2021, 9, 105384.	3.3	24
61	Development of chitosan encapsulated tricalcium phosphate biocomposite for fluoride retention. International Journal of Biological Macromolecules, 2019, 133, 811-816.	3.6	23
62	Microfabrication of Triazine Functionalized Graphene Oxide Anchored Alginate Bead System for Effective Nutrients Removal. Journal of Chemical & Engineering Data, 2020, 65, 2712-2724.	1.0	22
63	Facile design of metal ion fabricated benzene-1,3,5-tricarboxylic acid based metal organic frameworks for defluoridation of water. Journal of Environmental Chemical Engineering, 2021, 9, 104995.	3.3	22
64	Rationally designed and hierarchically structured functionalized aluminium organic frameworks incorporated chitosan hybrid beads for defluoridation of water. International Journal of Biological Macromolecules, 2022, 207, 941-951.	3.6	22
65	Fabrication of magnetic particles reinforced nano-hydroxyapatite/gelatin composite for selective Cr(<scp>vi</scp>) removal from water. Environmental Science: Water Research and Technology, 2018, 4, 783-794.	1.2	21
66	Micro-encapsulation and hydrothermal tuning of amine decorated magnetic alginate hybrid beads for nitrate and phosphate remediation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 283-296.	2.7	20
67	Effect of polyvalent metal ions encrusted biopolymeric hybrid beads on nitrate adsorption. Journal of Environmental Chemical Engineering, 2020, 8, 103894.	3.3	20
68	Enhanced Chromium Sorption and Quick Separation of Magnetic Hydrotalcite Anchored Biopolymeric Composites Using the Hydrothermal Method. Journal of Chemical & Engineering Data, 2018, 63, 1286-1299.	1.0	19
69	Investigation of Hydroxyapatite-Entrenched Cerium Organic Frameworks Incorporating Biopolymeric Beads for Efficient Fluoride Removal. Industrial & Engineering Chemistry Research, 2022, 61, 7911-7925.	1.8	19
70	Defluoridation of water using chitosan assisted ethylenediamine functionalized synthetic polymeric blends. International Journal of Biological Macromolecules, 2014, 70, 621-627.	3.6	18
71	Hydrothermal fabrication of triazine-functionalized covalent organic polymer enfolded alginate biocomposite beads for Cr(vi) removal from water. Environmental Science: Water Research and Technology, 2020, 6, 851-863.	1.2	17
72	Facile fabrication of tunable porous zirconium fumarate based metal organic frameworks in the retention of nutrients from water. Environmental Science: Water Research and Technology, 2020, 6, 2856-2870.	1.2	17

#	Article	IF	Citations
73	Hydrothermal Synthesis of Melamine-Functionalized Covalent Organic Polymer-Blended Alginate Beads for Iron Removal from Water. Journal of Chemical & Engineering Data, 2019, 64, 2280-2291.	1.0	15
74	Development of Magnetic Particles Encrusted LDH-Admixed Biopolymeric Complex Beads for Selective Phosphate Remediation. Journal of Chemical & Engineering Data, 2019, 64, 5725-5736.	1.0	14
75	Development of triaminotriazine functionalized graphene oxide capped chitosan porous composite beads for nutrients remediation towards water purification. International Journal of Biological Macromolecules, 2021, 170, 13-23.	3.6	14
76	Design and synthesis of amine grafted graphene oxide encapsulated chitosan hybrid beads for defluoridation of water. International Journal of Biological Macromolecules, 2021, 182, 1843-1851.	3.6	14
77	Fabrication of Multi-functionalized Graphene Oxide Doped Alginate Hybrid Spheres for Enhanced Fluoride Adsorption. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 216-228.	1.9	14
78	A facile synthesis of 2D iron bridged trimesic acid based MOFs for superior nitrate and phosphate retention. Journal of Environmental Chemical Engineering, 2022, 10, 107233.	3.3	14
79	Facile hydrothermal fabrication of functionalized multiâ€layer graphene oxide encapsulated chitosan beads for enriched fluoride adsorption. Journal of Applied Polymer Science, 2022, 139, 51703.	1.3	13
80	Activated Carbon from Different Waste Materials for the Removal of Toxic Metals. Environmental Chemistry for A Sustainable World, 2020, , 47-68.	0.3	12
81	Design and fabrication of sulfonic acid functionalized graphene oxide for enriched fluoride adsorption. Diamond and Related Materials, 2021, 117, 108446.	1.8	11
82	Eco-friendly design of functionalized graphene oxide incorporated alginate beads for selective fluoride retention. Diamond and Related Materials, 2022, 121, 108747.	1.8	11
83	Facile Fabrication of Zirconium–Organic Framework–Embedded Chitosan Hybrid Spheres for Efficient Fluoride Adsorption. ACS ES&T Water, 2022, 2, 52-62.	2.3	11
84	Complex Fabrication of Zr ⁴⁺ , La ³⁺ , and Ce ³⁺ Coordinated Alginate-Assisted Bentonite-Based Hybrid Beads for Nitrate Removal. Journal of Chemical & Description (2018) Engineering Data, 2021, 66, 979-989.	1.0	10
85	Superficial development of Lewis zirconium ion cross-linked gelatin/kaolin hybrid composite for nutrients remediation. Journal of Molecular Liquids, 2021, 324, 114982.	2.3	5
86	Development of cerium-trimesic acid complexed 2D frameworks for effective nitrate and phosphate remediation. Journal of Molecular Structure, 2022, 1250, 131873.	1.8	3
87	Efficient Removal of Aqueous Aromatic Pollutants by Various Techniques. , 2019, , 261-285.		2
88	Remediation of Fluoride Using Montmorillonite@Chitosan Biocomposite. Journal of Chitin and Chitosan Science, 2015, 3, 39-45.	0.3	2
89	Role of Metalâ^'Organic Frameworks for Removal of Toxic Ions. ACS Symposium Series, 0, , 53-76.	0.5	1
90	Fabrication and analyzing of Drypetes sepiaria encapsulated chitosan hybrid beads as anticorrosion agent. Materials Today: Proceedings, 2021, 47, 1929-1936.	0.9	0

ARTICLE IF CITATIONS

91 Role of Eco-Friendly Adsorbents in Defluoridation of Water., 2017,, 57-97.