Sean M Geary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9544197/publications.pdf Version: 2024-02-01

		394421	434195
32	1,640 citations	19	31
papers	citations	h-index	g-index
33	33	33	3158
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	3D Printing of Scaffolds for Tissue Regeneration Applications. Advanced Healthcare Materials, 2015, 4, 1742-1762.	7.6	692
2	Biomimetic Mineralization of Biomaterials Using Simulated Body Fluids for Bone Tissue Engineering and Regenerative Medicine . Tissue Engineering - Part A, 2017, 23, 1169-1180.	3.1	102
3	Size-dependent cytotoxicity of copper oxide nanoparticles in lung epithelial cells. Environmental Science: Nano, 2016, 3, 365-374.	4.3	78
4	Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics. AAPS Journal, 2018, 20, 108.	4.4	67
5	Tissue Engineering for the Temporomandibular Joint. Advanced Healthcare Materials, 2019, 8, e1801236.	7.6	65
6	Bone Regeneration Using Gene-Activated Matrices. AAPS Journal, 2017, 19, 43-53.	4.4	64
7	Biodegradable particles as vaccine antigen delivery systems for stimulating cellular immune responses. Human Vaccines and Immunotherapeutics, 2013, 9, 2584-2590.	3.3	63
8	Synthetically lethal nanoparticles for treatment of endometrial cancer. Nature Nanotechnology, 2018, 13, 72-81.	31.5	53
9	The Combination of a Low-Dose Chemotherapeutic Agent, 5-Fluorouracil, and an Adenoviral Tumor Vaccine Has a Synergistic Benefit on Survival in a Tumor Model System. PLoS ONE, 2013, 8, e67904.	2.5	47
10	Controlled and Sequential Delivery of Fluorophores from 3D Printed Alginate-PLGA Tubes. Annals of Biomedical Engineering, 2017, 45, 297-305.	2.5	46
11	The effect of polyanhydride chemistry in particle-based cancer vaccines on the magnitude of the anti-tumor immune response. Acta Biomaterialia, 2017, 50, 417-427.	8.3	45
12	Prostate cancer vaccines. Oncolmmunology, 2013, 2, e24523.	4.6	34
13	Fabrication and Use of Poly(d,l-lactide-co-glycolide)-Based Formulations Designed for Modified Release of 5-Fluorouracil. Journal of Pharmaceutical Sciences, 2018, 107, 513-528.	3.3	30
14	Enhancement of Therapies for Glioblastoma (GBM) Using Nanoparticle-based Delivery Systems. AAPS PharmSciTech, 2021, 22, 71.	3.3	28
15	Diaminosulfide based polymer microparticles as cancer vaccine delivery systems. Journal of Controlled Release, 2015, 220, 682-690.	9.9	26
16	Single Dose of a Polyanhydride Particle-Based Vaccine Generates Potent Antigen-Specific Antitumor Immune Responses. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 855-863.	2.5	22
17	Silicon Nanowires and Their Impact on Cancer Detection and Monitoring. ACS Applied Nano Materials, 2020, 3, 8522-8536.	5.0	22
18	Nanoparticle-based CpG-oligonucleotide therapy for treating allergic asthma. Immunotherapy, 2018, 10, 595-604.	2.0	20

SEAN M GEARY

#	Article	IF	CITATIONS
19	Assessing the effect of engineered nanomaterials on the environment and human health. Journal of Allergy and Clinical Immunology, 2016, 138, 405-408.	2.9	19
20	Proposed mechanisms of action for prostate cancer vaccines. Nature Reviews Urology, 2013, 10, 149-160.	3.8	15
21	Combining ultrasound and intratumoral administration of doxorubicin-loaded microspheres to enhance tumor cell killing. International Journal of Pharmaceutics, 2018, 539, 139-146.	5.2	15
22	Combining Doxorubicin-Loaded PEGylated Poly(Lactide-co-glycolide) Nanoparticles with Checkpoint Inhibition Safely Enhances Therapeutic Efficacy in a Melanoma Model. ACS Biomaterials Science and Engineering, 2020, 6, 2659-2667.	5.2	15
23	Surface-modified particles loaded with CaMKII inhibitor protect cardiac cells against mitochondrial injury. International Journal of Pharmaceutics, 2017, 520, 275-283.	5.2	12
24	Pentaerythritol-based lipid A bolsters the antitumor efficacy of a polyanhydride particle-based cancer vaccine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102055.	3.3	11
25	Skin Penetration Enhancement Strategies Used in the Development of Melanoma Topical Treatments. AAPS Journal, 2021, 23, 19.	4.4	11
26	Production of Adjuvant-Loaded Biodegradable Particles for Use in Cancer Vaccines. Methods in Molecular Biology, 2017, 1494, 201-213.	0.9	9
27	Cyclohepta[<i>b</i>]thiophenes as Potential Antiproliferative Agents: Design, Synthesis, <i>In Vitro</i> , and <i>In Vivo</i> Anticancer Evaluation. ACS Pharmacology and Translational Science, 2020, 3, 965-977.	4.9	8
28	Thiophene Derivative‣oaded Nanoparticles Mediate Anticancer Activity Through the Inhibition of Kinases and Microtubule Assembly. Advanced Therapeutics, 2021, 4, 2100058.	3.2	7
29	Exploiting the Tumor Phenotype Using Biodegradable Submicron Carriers of Chemotherapeutic Drugs. Critical Reviews in Oncogenesis, 2014, 19, 269-280.	0.4	5
30	The MEK 1/2 inhibitor PD98059 exhibits synergistic anti-endometrial cancer activity with paclitaxel in vitro and enhanced tissue distribution in vivo when formulated into PAMAM-coated PLGA-PEG nanoparticles. Drug Delivery and Translational Research, 2022, 12, 1684-1696.	5.8	5
31	Preparation and Characterization of a Liver Targeted, Poly(amidoamine) Based, Gene Delivery System. Methods in Molecular Biology, 2022, 2455, 319-332.	0.9	4
32	Implications of current and future approaches to coronavirus disease 2019 testing. Future Virology, 2020, 15, 551-556.	1.8	0