Fulvio Mattivi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9543875/publications.pdf Version: 2024-02-01

Ειιίνιο Μλττινι

#	Article	IF	CITATIONS
1	Investigation of Brazilian grape juice metabolomic profile changes caused by methyl jasmonate preâ€harvest treatment. International Journal of Food Science and Technology, 2023, 58, 3224-3233.	2.7	4
2	Modeling grape taste and mouthfeel from chemical composition. Food Chemistry, 2022, 371, 131168.	8.2	10
3	Sustainable Technological Methods for the Extraction of Phytochemicals from Citrus Byproducts. Methods in Molecular Biology, 2022, 2396, 19-27.	0.9	1
4	Analysis of Grape Volatiles Using Atmospheric Pressure Ionization Gas Chromatography Mass Spectrometry-Based Metabolomics. Methods in Molecular Biology, 2022, 2396, 117-136.	0.9	1
5	Association between the indole pathway of tryptophan metabolism and subclinical depressive symptoms in obesity: a preliminary study. International Journal of Obesity, 2022, 46, 885-888.	3.4	12
6	Application of a Target-Guided Data Processing Approach in Saturated Peak Correction of GC×GC Analysis. Analytical Chemistry, 2022, 94, 1941-1948.	6.5	2
7	Comparison of chemometric strategies for potential exposure marker discovery and false-positive reduction in untargeted metabolomics: application to the serum analysis by LC-HRMS after intake of Vaccinium fruit supplements. Analytical and Bioanalytical Chemistry, 2022, 414, 1841-1855.	3.7	5
8	Measurement of the Effect of Accelerated Aging on the Aromatic Compounds of Gewürztraminer and Teroldego Wines, Using a SPE-GC-MS/MS Protocol. Metabolites, 2022, 12, 180.	2.9	8
9	Impact of wheat aleurone on biomarkers of cardiovascular disease, gut microbiota and metabolites in adults with high body mass index: a double-blind, placebo-controlled, randomized clinical trial. European Journal of Nutrition, 2022, 61, 2651-2671.	3.9	5
10	Branched-Chain and Aromatic Amino Acids Related to Visceral Adipose Tissue Impact Metabolic Health Risk Markers. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2896-e2905.	3.6	1
11	Phenolic Compound Profile by UPLC-MS/MS and Encapsulation with Chitosan of Spondias mombin L. Fruit Peel Extract from Cerrado Hotspot—Brazil. Molecules, 2022, 27, 2382.	3.8	1
12	A Screening of Native (Poly)phenols and Gutâ€Related Metabolites on 3D HCT116 Spheroids Reveals Gut Health Benefits of a Flavanâ€3â€ol Metabolite. Molecular Nutrition and Food Research, 2022, 66, e2101043.	3.3	12
13	Metabolomic Workflow for the Accurate and High-Throughput Exploration of the Pathways of Tryptophan, Tyrosine, Phenylalanine, and Branched-Chain Amino Acids in Human Biofluids. Journal of Proteome Research, 2022, 21, 1262-1275.	3.7	7
14	Special Issue on Flavour Volatiles of Wine. Foods, 2022, 11, 69.	4.3	0
15	The macromolecular diversity of Italian monovarietal red wines. Oeno One, 2022, 56, 81-90.	1.4	5
16	The contribution of varietal thiols in the diverse aroma of Italian monovarietal white wines. Food Research International, 2022, 157, 111404.	6.2	7
17	Metabolomic Characterization of Pigmented and Non-Pigmented Potato Cultivars Using a Joint and Individual Variation Explained (JIVE). Foods, 2022, 11, 1708.	4.3	5
18	Flint glass bottles cause white wine aroma identity degradation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7

#	Article	IF	CITATIONS
19	An Investigation into the Temporal Reproducibility of Tryptophan Metabolite Networks Among Healthy Adolescents. International Journal of Tryptophan Research, 2021, 14, 117864692110413.	2.3	7
20	Improving the Phloroglucinolysis Protocol and Characterization of Sagrantino Wines Proanthocyanidins. Molecules, 2021, 26, 1087.	3.8	10
21	New Advanced Glycation End Products Observed in Rat Urine by Untargeted Metabolomics after Feeding with Heatâ€Treated Skimmed Milk Powder. Molecular Nutrition and Food Research, 2021, 65, 2001049.	3.3	3
22	Not just shrivelling: time-series profiling of the biochemical changes in Corvina (<i>Vitis) Tj ETQq0 0 0 rgBT</i>	/Overlock 1.4	10 Tf 50 622
23	Diversity of Italian red wines: A study by enological parameters, color, and phenolic indices. Food Research International, 2021, 143, 110277.	6.2	18
24	The Moringin/α-CD Pretreatment Induces Neuroprotection in an In Vitro Model of Alzheimer's Disease: A Transcriptomic Study. Current Issues in Molecular Biology, 2021, 43, 197-214.	2.4	13
25	H/D Exchange Processes in Flavonoids: Kinetics and Mechanistic Investigations. Molecules, 2021, 26, 3544.	3.8	2
26	Metabolomic Characterization of Commercial, Old, and Red-Fleshed Apple Varieties. Metabolites, 2021, 11, 378.	2.9	13
27	Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds. Food Chemistry, 2021, 357, 129757.	8.2	12
28	Grapevine and Wine Metabolomics-Based Guidelines for FAIR Data and Metadata Management. Metabolites, 2021, 11, 757.	2.9	16
29	Two apples a day lower serum cholesterol and improve cardiometabolic biomarkers in mildly hypercholesterolemic adults: a randomized, controlled, crossover trial. American Journal of Clinical Nutrition, 2020, 111, 307-318.	4.7	63
30	Lipid Profiling and Stable Isotopic Data Analysis for Differentiation of Extra Virgin Olive Oils Based on Their Origin. Molecules, 2020, 25, 4.	3.8	24
31	Food intake biomarkers for berries and grapes. Genes and Nutrition, 2020, 15, 17.	2.5	39
32	Liquid Chromatography–Mass Spectrometry-Based Metabolomics for Understanding the Compositional Changes Induced by Oxidative or Anoxic Storage of Red Wines. Journal of Agricultural and Food Chemistry, 2020, 68, 13367-13379.	5.2	15
33	Potent Antifungal Properties of Dimeric Acylphloroglucinols from Hypericum mexicanum and Mechanism of Action of a Highly Active 3′Prenyl Uliginosin B. Metabolites, 2020, 10, 459.	2.9	4
34	Symposium Introduction: Recent Progress and Current Challenges in Wine Analytical Sciences. Journal of Agricultural and Food Chemistry, 2020, 68, 13291-13293.	5.2	1
35	Phytochemicals in Legumes: A Qualitative Reviewed Analysis. Journal of Agricultural and Food Chemistry, 2020, 68, 13486-13496.	5.2	20
36	Kinetic investigations of sulfite addition to flavanols. Scientific Reports, 2020, 10, 12792.	3.3	12

#	Article	IF	CITATIONS
37	Removal of biogenic amines from wines by chemisorption on functionalized silica and effects on other wine components. Scientific Reports, 2020, 10, 17279.	3.3	3
38	Microbial community dynamics in phyto-thermotherapy baths viewed through next generation sequencing and metabolomics approach. Scientific Reports, 2020, 10, 17931.	3.3	4
39	On sample preparation methods for fermented beverage VOCs profiling by GCxGC-TOFMS. Metabolomics, 2020, 16, 102.	3.0	10
40	Exploratory Analysis of Commercial Olive-Based Dietary Supplements Using Untargeted and Targeted Metabolomics. Metabolites, 2020, 10, 516.	2.9	4
41	Discovery of Intake Biomarkers of Lentils, Chickpeas, and White Beans by Untargeted LC–MS Metabolomics in Serum and Urine. Molecular Nutrition and Food Research, 2020, 64, e1901137.	3.3	30
42	Preliminary sensory characterisation of the diverse astringency of single cultivar Italian red wines and correlation of subâ€qualities with chemical composition. Australian Journal of Grape and Wine Research, 2020, 26, 233-246.	2.1	19
43	Impact of proanthocyanidin-rich apple intake on gut microbiota composition and polyphenol metabolomic activity in healthy mildly hypercholesterolemic subjects. Proceedings of the Nutrition Society, 2020, 79, .	1.0	3
44	Biomarkers of intake for tropical fruits. Genes and Nutrition, 2020, 15, 11.	2.5	20
45	Intestinal Organoids: A Tool for Modelling Diet–Microbiome–Host Interactions. Trends in Endocrinology and Metabolism, 2020, 31, 848-858.	7.1	33
46	Tryptophan Metabolic Pathways Are Altered in Obesity and Are Associated With Systemic Inflammation. Frontiers in Immunology, 2020, 11, 557.	4.8	105
47	Two apples a day modulate human:microbiome co-metabolic processing of polyphenols, tyrosine and tryptophan. European Journal of Nutrition, 2020, 59, 3691-3714.	3.9	20
48	White wine light-strike fault: A comparison between flint and green glass bottles under the typical supermarket conditions. Food Packaging and Shelf Life, 2020, 24, 100492.	7.5	13
49	Use of Untargeted Liquid Chromatography–Mass Spectrometry Metabolome To Discriminate Italian Monovarietal Red Wines, Produced in Their Different Terroirs. Journal of Agricultural and Food Chemistry, 2020, 68, 13353-13366.	5.2	41
50	Urine Metabolome Profiling Reveals Imprints of Food Heating Processes after Dietary Intervention with Differently Cooked Potatoes. Journal of Agricultural and Food Chemistry, 2020, 68, 6122-6131.	5.2	12
51	Longitudinal relationship of amino acids and indole metabolites with long-term body mass index and cardiometabolic risk markers in young individuals. Scientific Reports, 2020, 10, 6399.	3.3	15
52	LC–MS untargeted approach showed that methyl jasmonate application on Vitis labrusca L. grapes increases phenolics at subtropical Brazilian regions. Metabolomics, 2020, 16, 18.	3.0	15
53	From grape berries to wines: drought impacts on key secondary metabolites. Oeno One, 2020, 54, 569-582.	1.4	20
54	The effects of leaf removal and artificial shading on the composition of Chardonnay and Pinot noir grapes. Oeno One, 2020, 54, 761-777.	1.4	10

#	Article	IF	CITATIONS
55	LC-MS/MS analysis of free fatty acid composition and other lipids in skins and seeds of Vitis vinifera grape cultivars. Food Research International, 2019, 125, 108556.	6.2	42
56	Quantification of Urinary Phenyl-Î ³ -Valerolactones and Related Valeric Acids in Human Urine on Consumption of Apples. Metabolites, 2019, 9, 254.	2.9	29
57	Metabolic Profiling of Human Plasma and Urine, Targeting Tryptophan, Tyrosine and Branched Chain Amino Acid Pathways. Metabolites, 2019, 9, 261.	2.9	49
58	Complementary Untargeted and Targeted Metabolomics for Differentiation of Extra Virgin Olive Oils of Different Origin of Purchase Based on Volatile and Phenolic Composition and Sensory Quality. Molecules, 2019, 24, 2896.	3.8	33
59	Methyl Salicylate Glycosides in Some Italian Varietal Wines. Molecules, 2019, 24, 3260.	3.8	10
60	Myrtle Seeds (<i>Myrtus communis</i> L.) as a Rich Source of the Bioactive Ellagitannins Oenothein B and Eugeniflorin D ₂ . ACS Omega, 2019, 4, 15966-15974.	3.5	17
61	Metabolite profiling of wines made from disease-tolerant varieties. European Food Research and Technology, 2019, 245, 2039-2052.	3.3	9
62	<i>Saccharomyces cerevisiae</i> and <i>Torulaspora delbrueckii</i> Intra- and Extra-Cellular Aromatic Amino Acids Metabolism. Journal of Agricultural and Food Chemistry, 2019, 67, 7942-7953.	5.2	25
63	Discovery and Validation of Banana Intake Biomarkers Using Untargeted Metabolomics in Human Intervention and Cross-sectional Studies. Journal of Nutrition, 2019, 149, 1701-1713.	2.9	27
64	Biomarkers of food intake for nuts and vegetable oils: an extensive literature search. Genes and Nutrition, 2019, 14, 7.	2.5	47
65	Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies. Molecular Nutrition and Food Research, 2019, 63, e1800384.	3.3	173
66	Untargeted Metabolomics Analytical Strategy Based on Liquid Chromatography/Electrospray lonization Linear Ion Trap Quadrupole/Orbitrap Mass Spectrometry for Discovering New Polyphenol Metabolites in Human Biofluids after Acute Ingestion of <i>Vaccinium myrtillus</i> Berry Supplement. Journal of the American Society for Mass Spectrometry, 2019, 30, 381-402.	2.8	26
67	Aromatic complexity in Verdicchio wines: a case study. Oeno One, 2019, 53, .	1.4	11
68	Tannins from Chestnut (Castanea sativa Mill.) leaves and fruits show promising in vitro antiinflammatory properties in gastric epithelial cells. , 2019, 85, .		0
69	LC-MS Untargeted Protocol for the Analysis of Wine. Methods in Molecular Biology, 2018, 1738, 225-235.	0.9	8
70	The impact of SO2 on wine flavanols and indoles in relation to wine style and age. Scientific Reports, 2018, 8, 858.	3.3	51
71	ONS: an ontology for a standardized description of interventions and observational studies in nutrition. Genes and Nutrition, 2018, 13, 12.	2.5	28
72	Phenolic profile, chemical relationship and antifungal activity of Andean Hypericum species. Industrial Crops and Products, 2018, 112, 32-37.	5.2	26

#	Article	IF	CITATIONS
73	Food intake biomarkers for apple, pear, and stone fruit. Genes and Nutrition, 2018, 13, 29.	2.5	51
74	The Compound Characteristics Comparison (CCC) approach: a tool for improving confidence in natural compound identification. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 2145-2157.	2.3	4
75	A bio-guided approach for the development of a chestnut-based proanthocyanidin-enriched nutraceutical with potential anti-gastritis properties. Pharmacological Research, 2018, 134, 145-155.	7.1	27
76	Extracts From Hypericum hircinum subsp. majus Exert Antifungal Activity Against a Panel of Sensitive and Drug-Resistant Clinical Strains Frontiers in Pharmacology, 2018, 9, 382.	3.5	12
77	Applying novel approaches for GC × GC-TOF-MS data cleaning and trends clustering in VOCs time-series analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1096, 56-65.	2.3	4
78	Host: Microbiome co-metabolic processing of dietary polyphenols – An acute, single blinded, cross-over study with different doses of apple polyphenols in healthy subjects. Food Research International, 2018, 112, 108-128.	6.2	67
79	Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome, 2017, 5, 4.	11.1	390
80	The metabolomic profile of red non- V. vinifera genotypes. Food Research International, 2017, 98, 10-19.	6.2	17
81	A biomechanical investigation of different screw head designs for vertebral derotation in scoliosis surgery. Spine Journal, 2017, 17, 1171-1179.	1.3	10
82	Development of a fast and cost-effective gas chromatography–mass spectrometry method for the quantification of short-chain and medium-chain fatty acids in human biofluids. Analytical and Bioanalytical Chemistry, 2017, 409, 5555-5567.	3.7	61
83	Combining traditional dietary assessment methods with novel metabolomics techniques: present efforts by the Food Biomarker Alliance. Proceedings of the Nutrition Society, 2017, 76, 619-627.	1.0	93
84	Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit. Frontiers in Plant Science, 2017, 8, 1124.	3.6	108
85	Identification of Biomarkers for Defense Response to Plasmopara viticola in a Resistant Grape Variety. Frontiers in Plant Science, 2017, 8, 1524.	3.6	65
86	Core Microbiota and Metabolome of Vitis vinifera L. cv. Corvina Grapes and Musts. Frontiers in Microbiology, 2017, 8, 457.	3.5	24
87	Nutraceutical Improvement Increases the Protective Activity of Broccoli Sprout Juice in a Human Intestinal Cell Model of Gut Inflammation. Pharmaceuticals, 2016, 9, 48.	3.8	21
88	Towards an open grapevine information system. Horticulture Research, 2016, 3, 16056.	6.3	34
89	Can 2 apples a day improve cardiovascular and gut health?. Proceedings of the Nutrition Society, 2016, 75, .	1.0	0
90	Regional features of northern Italian sparkling wines, identified using solid-phase micro extraction and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Food Chemistry, 2016, 208, 68-80.	8.2	56

#	Article	IF	CITATIONS
91	Strawberry tannins inhibit IL-8 secretion in a cell model of gastric inflammation. Pharmacological Research, 2016, 111, 703-712.	7.1	36
92	Comments on Moderate Alcohol Consumption and Mortality. Journal of Studies on Alcohol and Drugs, 2016, 77, 834-836.	1.0	6
93	Determination of cyanidin 3-glucoside in rat brain, liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study. Scientific Reports, 2016, 6, 22815.	3.3	67
94	Urinary metabolomic profiling to identify biomarkers of a flavonoid-rich and flavonoid-poor fruits and vegetables diet in adults: the FLAVURS trial. Metabolomics, 2016, 12, 1.	3.0	28
95	Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biology, 2016, 16, 67.	3.6	269
96	Key enzymes behind black pepper aroma in wines. Journal of Experimental Botany, 2016, 67, 555-557.	4.8	6
97	Wine metabolomics reveals new sulfonated products in bottled white wines, promoted by small amounts of oxygen. Journal of Chromatography A, 2016, 1429, 155-165.	3.7	67
98	Studying the effect of storage conditions on the metabolite content of red wine using HILIC LC–MS based metabolomics. Food Chemistry, 2016, 197, 1331-1340.	8.2	52
99	Metabolomic profile in pancreatic cancer patients: a consensus-based approach to identify highly discriminating metabolites. Oncotarget, 2016, 7, 5815-5829.	1.8	68
100	Development of a metabolites risk score for one-year mortality risk prediction in pancreatic adenocarcinoma patients. Oncotarget, 2016, 7, 8968-8978.	1.8	17
101	Is There Room for Improving the Nutraceutical Composition of Apple?. Journal of Agricultural and Food Chemistry, 2015, 63, 2750-2759.	5.2	64
102	Influence of Storage Conditions on the Composition of Red Wines. ACS Symposium Series, 2015, , 29-49.	0.5	16
103	Overall dietary polyphenol intake in a bowl of strawberries: The influence of Fragaria spp. in nutritional studies. Journal of Functional Foods, 2015, 18, 1057-1069.	3.4	24
104	Reversal of radiocontrast medium toxicity in human renal proximal tubular cells by white grape juice extract. Chemico-Biological Interactions, 2015, 229, 17-25.	4.0	21
105	High Production of Small Organic Dicarboxylate Dianions by DESI and ESI. Journal of the American Society for Mass Spectrometry, 2015, 26, 386-389.	2.8	6
106	New candidate genes for the fine regulation of the colour of grapes. Journal of Experimental Botany, 2015, 66, 4427-4440.	4.8	97
107	Comparing Wild American Grapes with <i>Vitis vinifera</i> : A Metabolomics Study of Grape Composition. Journal of Agricultural and Food Chemistry, 2015, 63, 6823-6834.	5.2	60
108	Fate of Microbial Metabolites of Dietary Polyphenols in Rats: Is the Brain Their Target Destination?. ACS Chemical Neuroscience, 2015, 6, 1341-1352.	3.5	118

#	Article	IF	CITATIONS
109	Neuroprotective effects of a polyphenolic white grape juice extract in a mouse model of experimental autoimmune encephalomyelitis. Fìtoterapìâ, 2015, 103, 171-186.	2.2	25
110	Chemical composition of volatile aroma metabolites and their glycosylated precursors that can uniquely differentiate individual grape cultivars. Food Chemistry, 2015, 188, 309-319.	8.2	65
111	A rapid LC–MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerolipids and sphingolipids in grapes. Talanta, 2015, 140, 52-61.	5.5	82
112	Do white grapes really exist?. Food Research International, 2015, 69, 21-25.	6.2	35
113	Metabolite profiling elucidates communalities and differences in the polyphenol biosynthetic pathways of red and white Muscat genotypes. Plant Physiology and Biochemistry, 2015, 86, 24-33.	5.8	20
114	MetaDB a Data Processing Workflow in Untargeted MS-Based Metabolomics Experiments. Frontiers in Bioengineering and Biotechnology, 2014, 2, 72.	4.1	29
115	Analysis of the phenolic composition of fungusâ€resistant grape varieties cultivated in Italy and Germany using UHPLCâ€MS/MS. Journal of Mass Spectrometry, 2014, 49, 860-869.	1.6	58
116	Development of a targeted method for twenty-three metabolites related to polyphenol gut microbial metabolism in biological samples, using SPE and UHPLC–ESI-MS/MS. Talanta, 2014, 128, 221-230.	5.5	49
117	The influence of storage on the "chemical age―of red wines. Metabolomics, 2014, 10, 816-832.	3.0	84
118	Apple consumption is related to better sexual quality of life in young women. Archives of Gynecology and Obstetrics, 2014, 290, 93-98.	1.7	4
119	Quantitative metabolic profiling of grape, apple and raspberry volatile compounds (VOCs) using a GC/MS/MS method. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 966, 132-139.	2.3	57
120	metaMS: An open-source pipeline for GC–MS-based untargeted metabolomics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 966, 109-116.	2.3	76
121	Analytical metabolomics-based approaches to pancreatic cancer. TrAC - Trends in Analytical Chemistry, 2014, 55, 94-116.	11.4	13
122	Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. BMC Plant Biology, 2014, 14, 188.	3.6	135
123	Metabonomic investigation of rat tissues following intravenous administration of cyanidin 3-glucoside at a physiologically relevant dose. Metabolomics, 2013, 9, 88-100.	3.0	20
124	The Case for Anthocyanin Consumption to Promote Human Health: A Review. Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 483-508.	11.7	477
125	Phenolic profile and effect of regular consumption of Brazilian red wines on in vivo antioxidant activity. Journal of Food Composition and Analysis, 2013, 31, 31-40.	3.9	55
126	Anticancer activity of flavonol and flavan-3-ol rich extracts from <i>Croton celtidifolius</i> latex. Pharmaceutical Biology, 2013, 51, 737-743.	2.9	20

#	Article	IF	CITATIONS
127	Use of Instrumental Acoustic Parameters of Winegrape Seeds as Possible Predictors of Extractable Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2013, 61, 8752-8764.	5.2	7
128	Evolution of Ellagitannin Content and Profile during Fruit Ripening in <i>Fragaria</i> spp Journal of Agricultural and Food Chemistry, 2013, 61, 8597-8607.	5.2	60
129	Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. International Journal of Molecular Sciences, 2013, 14, 19651-19669.	4.1	266
130	Ellagitannins from Rubus Berries for the Control of Gastric Inflammation: In Vitro and In Vivo Studies. PLoS ONE, 2013, 8, e71762.	2.5	109
131	Combining intensity correlation analysis and MALDI imaging to study the distribution of flavonols and dihydrochalcones in Golden Delicious apples. Journal of Experimental Botany, 2012, 63, 1123-1133.	4.8	54
132	Effects of Elicitors, Viticultural Factors, and Enological Practices on Resveratrol and Stilbenes in Grapevine and Wine. Mini-Reviews in Medicinal Chemistry, 2012, 12, 1366-1381.	2.4	2
133	Hydrolyzable Tannins. , 2012, , 435-460.		5
134	Antioxidant Activity of Phenolic Acids and Their Metabolites: Synthesis and Antioxidant Properties of the Sulfate Derivatives of Ferulic and Caffeic Acids and of the Acyl Glucuronide of Ferulic Acid. Journal of Agricultural and Food Chemistry, 2012, 60, 12312-12323.	5.2	157
135	D-optimal design of an untargeted HS-SPME-GC-TOF metabolite profiling method. Analyst, The, 2012, 137, 3725.	3.5	12
136	Optimization of a Method Based on the Simultaneous Measurement of Acoustic and Mechanical Properties of Winegrape Seeds for the Determination of the Ripening Stage. Journal of Agricultural and Food Chemistry, 2012, 60, 9006-9016.	5.2	11
137	Development of reliable analytical tools for evaluating the influence of reductive winemaking on the quality of Lugana wines. Analytica Chimica Acta, 2012, 732, 194-202.	5.4	44
138	A Metabolomic Approach to the Study of Wine Micro-Oxygenation. PLoS ONE, 2012, 7, e37783.	2.5	80
139	Study of Sangiovese Wines Pigment Profile by UHPLC-MS/MS. Journal of Agricultural and Food Chemistry, 2012, 60, 10461-10471.	5.2	84
140	Quantitative profiling of polar primary metabolites using hydrophilic interaction ultrahigh performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2012, 1259, 121-127.	3.7	105
141	Clarifying the Identity of the Main Ellagitannin in the Fruit of the Strawberry, Fragaria vesca and Fragaria ananassa Duch Journal of Agricultural and Food Chemistry, 2012, 60, 2507-2516.	5.2	65
142	Apple Can Act as Anti-Aging on Yeast Cells. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-8.	4.0	23
143	A Versatile Targeted Metabolomics Method for the Rapid Quantification of Multiple Classes of Phenolics in Fruits and Beverages. Journal of Agricultural and Food Chemistry, 2012, 60, 8831-8840.	5.2	267
144	Hydrophilic interaction ultra performance liquid chromatography retention prediction under gradient elution. Analytical and Bioanalytical Chemistry, 2012, 404, 701-709.	3.7	32

#	Article	IF	CITATIONS
145	LC-MS based global metabolite profiling of grapes: solvent extraction protocol optimisation. Metabolomics, 2012, 8, 175-185.	3.0	72
146	Transport and bioactivity of cyanidin 3-glucoside into the vascular endothelium. Free Radical Biology and Medicine, 2012, 52, 1750-1759.	2.9	57
147	Profiling and accurate quantification of trans-resveratrol, trans-piceid, trans-pterostilbene and 11 viniferins induced by Plasmopara viticola in partially resistant grapevine leaves. Australian Journal of Grape and Wine Research, 2012, 18, 11-19.	2.1	26
148	Identification of intermediates involved in the biosynthetic pathway of 3-mercaptohexan-1-ol conjugates in yellow passion fruit (Passiflora edulis f. flavicarpa). Phytochemistry, 2012, 77, 287-293.	2.9	25
149	Identification and quantification of flavonol glycosides in cultivated blueberry cultivars. Journal of Food Composition and Analysis, 2012, 25, 9-16.	3.9	54
150	A benchmark spikeâ€in data set for biomarker identification in metabolomics. Journal of Chemometrics, 2012, 26, 16-24.	1.3	32
151	Retention prediction of a set of amino acids under gradient elution conditions in hydrophilic interaction liquid chromatography. Journal of Separation Science, 2012, 35, 376-383.	2.5	18
152	Effects of Elicitors, Viticultural Factors, and Enological Practices on Resveratrol and Stilbenes in Grapevine and Wine. Mini-Reviews in Medicinal Chemistry, 2012, 12, 1366-1381.	2.4	54
153	Drinking Guidance for Red Wine: To Be Taken with Meals: Red Wine Prevents the Postprandial Increase of Plasma Oxidized Lipids. Journal of Wine Research, 2011, 22, 165-170.	1.5	0
154	Stilbenes and Tyrosol as Target Compounds in the Assessment of Antioxidant and Hypolipidemic Activity of <i>Vitis vinifera</i> Red Wines from Southern Brazil. Journal of Agricultural and Food Chemistry, 2011, 59, 7954-7961.	5.2	51
155	Relationship of Changes in Rotundone Content during Grape Ripening and Winemaking to Manipulation of the â€~Peppery' Character of Wine. Journal of Agricultural and Food Chemistry, 2011, 59, 5565-5571.	5.2	81
156	Profiling of Resveratrol Oligomers, Important Stress Metabolites, Accumulating in the Leaves of Hybrid Vitis vinifera (Merzling × Teroldego) Genotypes Infected with Plasmopara viticola. Journal of Agricultural and Food Chemistry, 2011, 59, 5364-5375.	5.2	115
157	Stability-based biomarker selection. Analytica Chimica Acta, 2011, 705, 15-23.	5.4	47
158	Exceptionally Fast Uptake and Metabolism of Cyanidin 3-Glucoside by Rat Kidneys and Liver. Journal of Natural Products, 2011, 74, 1049-1054.	3.0	52
159	Volatiles that encode host-plant quality in the grapevine moth. Phytochemistry, 2011, 72, 1999-2005.	2.9	36
160	Seasonal and tissue-specific transgene expression and resveratrol-3-glucoside (piceid) accumulation in genetically modified white poplars carrying the grapevine StSy gene. Plant Cell, Tissue and Organ Culture, 2011, 105, 1-8.	2.3	4
161	Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses. BMC Plant Biology, 2011, 11, 114.	3.6	103
162	Effective analysis of rotundone at belowâ€threshold levels in red and white wines using solidâ€phase microextraction gas chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 483-488.	1.5	38

#	Article	IF	CITATIONS
163	Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. Journal of Chromatography A, 2011, 1218, 4517-4524.	3.7	100
164	Proanthocyanidin profile and antioxidant capacity of Brazilian Vitis vinifera red wines. Food Chemistry, 2011, 126, 213-220.	8.2	55
165	Red wine prevents the postprandial increase in plasma cholesterol oxidation products: a pilot study. British Journal of Nutrition, 2011, 105, 1718-1723.	2.3	35
166	Wine Pigments: From Your Cup to Your Cells. Journal of Wine Research, 2011, 22, 143-145.	1.5	0
167	The Immunomodulating Activities of Resveratrol Glucosides in Humans. Recent Patents on Food, Nutrition & Agriculture, 2011, 3, 81-90.	0.9	9
168	Profiling and Accurate Quantification of <i>Rubus</i> Ellagitannins and Ellagic Acid Conjugates Using Direct UPLC-Q-TOF HDMS and HPLC-DAD Analysis. Journal of Agricultural and Food Chemistry, 2010, 58, 4602-4616.	5.2	125
169	Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor. BMC Genomics, 2009, 10, 363.	2.8	54
170	Determination and Confirmation of Nicotinic Acid and Its Analogues and Derivates in Pear and Apple Blossoms Using High-Performance Liquid Chromatographyâ^'Diode Arrayâ^'Electrospray Ionization Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2009, 57, 10038-10043.	5.2	8
171	Leaf-associated bacteria from transgenic white poplar producing resveratrol-like compounds: isolation, molecular characterization, and evaluation of oxidative stress tolerance. Canadian Journal of Microbiology, 2009, 55, 829-840.	1.7	9
172	White Wine Phenolics Are Absorbed and Extensively Metabolized in Humans. Journal of Agricultural and Food Chemistry, 2009, 57, 2711-2718.	5.2	51
173	Differences in the amount and structure of extractable skin and seed tannins amongst red grape varieties. Australian Journal of Grape and Wine Research, 2009, 15, 27-35.	2.1	155
174	ROLE OF THE GENOTYPE ON STILBENE SYNTHESIS IN GRAPEVINE. Acta Horticulturae, 2009, , 347-350.	0.2	1
175	A THREE-YEAR HIGHBUSH BLUEBERRY SURVEY IN DIFFERENT EUROPEAN LOCATIONS FOR THE FRESH AND THE PROCESSING MARKETS. Acta Horticulturae, 2009, , 887-894.	0.2	4
176	ELLAGITANNIN CONTENT IN RASPBERRY AND BLACKBERRY CULTIVARS GROWN IN TRENTINO (ITALY). Acta Horticulturae, 2009, , 85-90.	0.2	2
177	METABOLIC AND TRANSCRIPTIONAL CHANGES IN RESISTANT AND SUSCEPTIBLE GENOTYPES OF A GRAPEVINE POPULATION SEGREGATING FOR THE RESISTANCE TO PLASMOPARA VITICOLA. Acta Horticulturae, 2009, , 635-640.	0.2	2
178	A survey of ellagitannin content in raspberry and blackberry cultivars grown in Trentino (Italy). European Food Research and Technology, 2008, 226, 817-824.	3.3	42
179	Ripening and Genotype Control Stilbene Accumulation in Healthy Grapes. Journal of Agricultural and Food Chemistry, 2008, 56, 11773-11785.	5.2	170
180	HORTICULTURAL AND NUTRITIONAL QUALITIES OF WHITE, RED AND BLACK CURRANTS. Acta Horticulturae, 2008, , 167-172.	0.2	7

#	Article	IF	CITATIONS
181	COMPARATIVE STUDY OF BIOLOGICAL AND NUTRITIONAL TRAITS OF RUBUS GENOTYPES. Acta Horticulturae, 2008, , 109-114.	0.2	1
182	A novel model to study the biological effects of red wine at the molecular level. British Journal of Nutrition, 2007, 97, 1053-1058.	2.3	21
183	Peroxyl radical trapping activity of anthocyanins and generation of free radical intermediates. Free Radical Research, 2007, 41, 854-859.	3.3	20
184	Evaluation of the expression level of the endogenous marker poUBI gene for studies on transgene stability in bar and StSy GM poplars. Caryologia, 2007, 60, 172-174.	0.3	3
185	The Fate oftrans-Caftaric Acid Administered into the Rat Stomach. Journal of Agricultural and Food Chemistry, 2007, 55, 1604-1611.	5.2	30
186	Evaluation of GM Poplars Expressing Relevant Traits for Herbicide Tolerance, Disease Resistance and Production of Pharmaceutics:Biochemical, Molecular and Microbiological Studies on Plants and Detection of Transgene Sequences in Soil. , 2007, , 413-418.		0
187	Metabolite Profiling of Grape:Â Flavonols and Anthocyanins. Journal of Agricultural and Food Chemistry, 2006, 54, 7692-7702.	5.2	537
188	Concentration and Mean Degree of Polymerization ofRubusEllagitannins Evaluated by Optimized Acid Methanolysis. Journal of Agricultural and Food Chemistry, 2006, 54, 4469-4475.	5.2	47
189	CHARACTERIZATION OF VACCINIUM CULTIVARS: HORTICULTURAL AND ANTIOXIDANT PROFILE. Acta Horticulturae, 2006, , 147-152.	0.2	1
190	FIRST EVALUATION OF STRAWBERRY GENOTYPES GROWN IN ITALIAN MOUNTAIN AREAS. Acta Horticulturae, 2006, , 535-540.	0.2	0
191	INFLUENCE OF CROP LOAD AND PRODUCTION SITE ON QUALITY OF Â'GOLDEN DELICIOUSÂ' APPLES DURING STORAGE. Acta Horticulturae, 2005, , 749-756.	0.2	2
192	In Vitro Inhibition of Human cGMP-Specific Phosphodiesterase-5 by Polyphenols from Red Grapes. Journal of Agricultural and Food Chemistry, 2005, 53, 1960-1965.	5.2	65
193	Major Phytochemicals in Apple Cultivars:  Contribution to Peroxyl Radical Trapping Efficiency. Journal of Agricultural and Food Chemistry, 2005, 53, 3377-3382.	5.2	50
194	Hepatic uptake of grape anthocyanins and the role of bilitranslocase. Food Research International, 2005, 38, 953-960.	6.2	42
195	Fast Access of Some Grape Pigments to the Brain. Journal of Agricultural and Food Chemistry, 2005, 53, 7029-7034.	5.2	165
196	Expression of the Stilbene Synthase (StSy) Gene from Grapevine in Transgenic White Poplar Results in High Accumulation of the Antioxidant Resveratrol Glucosides. Transgenic Research, 2004, 13, 203-214.	2.4	81
197	Stable Free Radicals and Peroxyl Radical Trapping Capacity in Red Wines. Journal of Agricultural and Food Chemistry, 2004, 52, 6151-6155.	5.2	19
198	Quantitation of Polyphenols in Different Apple Varieties. Journal of Agricultural and Food Chemistry, 2004, 52, 6532-6538.	5.2	388

FULVIO ΜΑΤΤΙVI

#	Article	IF	CITATIONS
199	The stomach as a site for anthocyanins absorption from food 1. FEBS Letters, 2003, 544, 210-213.	2.8	267
200	Synergistic antioxidant effect of catechin and malvidin 3-glucoside on free radical-initiated peroxidation of linoleic acid in micelles. Archives of Biochemistry and Biophysics, 2002, 408, 239-245.	3.0	88
201	The interaction of anthocyanins with bilitranslocase. Biochemical and Biophysical Research Communications, 2002, 296, 631-636.	2.1	187
202	Wine, Biodiversity, Technology, and Antioxidants. Annals of the New York Academy of Sciences, 2002, 957, 37-56.	3.8	80
203	Stable free radicals as ubiquitous components of red wines. Free Radical Research, 2001, 35, 933-939.	3.3	9
204	High-performance liquid chromatographic determination of the riboflavin concentration in white wines for predicting their resistance to light. Journal of Chromatography A, 2000, 888, 121-127.	3.7	59
205	CHARACTERIZATION OF POLYPHENOLS OF REBO (I.R. 107-3) WINES IN COMPARISON WITH OTHER RIGOTTI CROSSES AND RELATED VARIETIES. Acta Horticulturae, 2000, , 693-702.	0.2	1
206	Contribution of Proanthocyanidins to the Peroxy Radical Scavenging Capacity of Some Italian Red Wines. Journal of Agricultural and Food Chemistry, 2000, 48, 1996-2002.	5.2	103
207	PARENTAGE ANALYSIS AND CHARACTERIZATION OF SOME ITALIAN VITIS VINIFERA CROSSES. Acta Horticulturae, 2000, , 139-145.	0.2	1
208	Determination of indole-3-acetic acid, tryptophan and other indoles in must and wine by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A, 1999, 855, 227-235.	3.7	71
209	Determination of riboflavin, flavin mononucleotide and flavin–adenine dinucleotide in wine and other beverages by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A, 1998, 823, 355-363.	3.7	84
210	The description and evaluation of grapevine land races in Oltrepò Pavese, Northern Italy. Journal of Wine Research, 1997, 8, 87-102.	1.5	1
211	The stabilization of white wines by adsorption of phenolic compounds on chitin and chitosan. Food Research International, 1996, 29, 241-248.	6.2	97
212	An oligostilbene from vitis roots. Phytochemistry, 1995, 38, 1501-1504.	2.9	46
213	Isolation, Characterization, and Evolution in Red Wine Vinification of Resveratrol Monomers. Journal of Agricultural and Food Chemistry, 1995, 43, 1820-1823.	5.2	227
214	Solid phase extraction oftrans-resveratrol from wines for HPLC analysis. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 196, 522-525.	0.6	85
215	A new linear dichroism approach for determining solute orientations within anionic micelles. Journal of the American Chemical Society, 1986, 108, 1679-1684.	13.7	12

216 Metabolic Biomarker Identification with Few Samples. , 0, , .