Robbert J Kok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9542815/publications.pdf

Version: 2024-02-01

123 6,502 44 77
papers citations h-index g-index

124 124 124 124 9515

124 124 124 9515
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resistance Updates, 2005, 8, 381-402.	14.4	412
2	Ligand-targeted particulate nanomedicines undergoing clinical evaluation: Current status. Advanced Drug Delivery Reviews, 2013, 65, 1284-1298.	13.7	338
3	Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. Journal of Controlled Release, 2003, 91, 115-122.	9.9	298
4	Covalently Linked Au Nanoparticles to a Viral Vector:  Potential for Combined Photothermal and Gene Cancer Therapy. Nano Letters, 2006, 6, 587-591.	9.1	250
5	Diverse origins of the myofibroblastâ€"implications for kidney fibrosis. Nature Reviews Nephrology, 2015, 11, 233-244.	9.6	210
6	Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges. International Journal of Pharmaceutics, 2016, 499, 358-367.	5. 2	207
7	Targeting tumors with nanobodies for cancer imaging and therapy. Journal of Controlled Release, 2013, 172, 607-617.	9.9	172
8	Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate–containing RGD peptide liposomes inhibits experimental arthritis. Arthritis and Rheumatism, 2006, 54, 1198-1208.	6.7	164
9	Effect of Particle Size on Drug Loading and Release Kinetics of Gefitinib-Loaded PLGA Microspheres. Molecular Pharmaceutics, 2017, 14, 459-467.	4.6	159
10	Differential effects of NF-κB and p38 MAPK inhibitors and combinations thereof on TNF-α- and IL-1β-induced proinflammatory status of endothelial cells in vitro. American Journal of Physiology - Cell Physiology, 2005, 289, C1229-C1239.	4.6	135
11	Preparation and Functional Evaluation of RGD-Modified Proteins as $\hat{l}\pm v\hat{l}^2$ 3Integrin Directed Therapeutics. Bioconjugate Chemistry, 2002, 13, 128-135.	3.6	134
12	Drug targeting to the kidney: Advances in the active targeting of therapeutics to proximal tubular cellsa ⁻ †. Advanced Drug Delivery Reviews, 2010, 62, 1344-1357.	13.7	130
13	A Novel Strategy to Modify Adenovirus Tropism and Enhance Transgene Delivery to Activated Vascular Endothelial CellsIn VitroandIn Vivo. Human Gene Therapy, 2004, 15, 433-443.	2.7	124
14	Nanomedicines as Cancer Therapeutics: Current Status. Current Cancer Drug Targets, 2013, 13, 362-378.	1.6	123
15	Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opinion on Drug Delivery, 2012, 9, 1225-1243.	5.0	116
16	How to screen non-viral gene delivery systems in vitro?. Journal of Controlled Release, 2011, 154, 218-232.	9.9	105
17	Oxidative stress in obstructive nephropathy. International Journal of Experimental Pathology, 2011, 92, 202-210.	1.3	100
18	Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology, 2010, 51, NA-NA.	7.3	96

#	Article	IF	Citations
19	Targeting podocyte-associated diseasesâ~†. Advanced Drug Delivery Reviews, 2010, 62, 1325-1336.	13.7	89
20	Glomerular and tubular induction of the transcription factor câ€Jun in human renal disease. Journal of Pathology, 2007, 213, 219-228.	4.5	88
21	Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells. Journal of Controlled Release, 2013, 165, 110-118.	9.9	88
22	Selective Intracellular Delivery of Dexamethasone into Activated Endothelial Cells Using an E-Selectin-Directed Immunoconjugate. Journal of Immunology, 2002, 168, 883-889.	0.8	85
23	Tumor-targeted Nanobullets: Anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment. Journal of Controlled Release, 2012, 159, 281-289.	9.9	83
24	Features of complement activation-related pseudoallergy to liposomes with different surface charge and PEGylation: Comparison of the porcine and rat responses. Journal of Controlled Release, 2014, 195, 2-10.	9.9	79
25	Local Inhibition of Liver Fibrosis by Specific Delivery of a Platelet-Derived Growth Factor Kinase Inhibitor to Hepatic Stellate Cells. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 856-865.	2.5	76
26	Release behavior and intra-articular biocompatibility of celecoxib-loaded acetyl-capped PCLA-PEG-PCLA thermogels. Biomaterials, 2014, 35, 7919-7928.	11.4	73
27	Targeting hepatocyte growth factor receptor (Met) positive tumor cells using internalizing nanobody-decorated albumin nanoparticles. Biomaterials, 2014, 35, 601-610.	11.4	72
28	Targeting of RGD-modified proteins to tumor vasculature: A pharmacokinetic and cellular distribution study. International Journal of Cancer, 2002, 102, 469-475.	5.1	66
29	In vitro cellular handling and in vivo targeting of E-selectin-directed immunoconjugates and immunoliposomes used for drug delivery to inflamed endothelium. Pharmaceutical Research, 2003, 20, 64-72.	3.5	65
30	The VEGF/Rho GTPase signalling pathway: A promising target for anti-angiogenic/anti-invasion therapy. Drug Discovery Today, 2011, 16, 219-228.	6.4	65
31	Polymer-Free Drug-Eluting Stents: An Overview of Coating Strategies and Comparison with Polymer-Coated Drug-Eluting Stents. Bioconjugate Chemistry, 2015, 26, 1277-1288.	3.6	64
32	Inhibition of Renal Rho Kinase Attenuates Ischemia/Reperfusion-Induced Injury. Journal of the American Society of Nephrology: JASN, 2008, 19, 2086-2097.	6.1	62
33	Intracellular Delivery of the p38 Mitogen-Activated Protein Kinase Inhibitor SB202190 [4-(4-Fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1 <i>H</i> hovel Strategy to Treat Renal Fibrosis. Journal of Pharmacology and Experimental Therapeutics, 2006, 319.8-19.	2.5	59
34	c-Jun NH ₂ -Terminal Kinase Is Crucially Involved in Renal Tubulo-Interstitial Inflammation. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 896-905.	2.5	58
35	Controlled Release of Octreotide and Assessment of Peptide Acylation from Poly(D,L-lactide-co-hydroxymethyl glycolide) Compared to PLGA Microspheres. Pharmaceutical Research, 2012, 29, 110-120.	3.5	58
36	Endothelial cells internalize and degrade RGD-modified proteins developed for tumor vasculature targeting. Journal of Controlled Release, 2002, 83, 241-251.	9.9	57

#	Article	lF	CITATIONS
37	Connective tissue growth factor (CTGF/CCN2) ELISA: a novel tool for monitoring fibrosis. Biomarkers, 2011, 16, 289-301.	1.9	55
38	Evaluation of RGD-Targeted Albumin Carriers for Specific Delivery of Auristatin E to Tumor Blood Vessels. Bioconjugate Chemistry, 2006, 17, 1385-1394.	3.6	51
39	Selective targeting of pentoxifylline to hepatic stellate cells using a novel platinum-based linker technology. Journal of Controlled Release, 2006, 111, 193-203.	9.9	50
40	A micelle-shedding thermosensitive hydrogel as sustained release formulation. Journal of Controlled Release, 2012, 162, 582-590.	9.9	50
41	Bioanalysis of captopril: two sensitive high-performance liquid chromatographic methods with pre- or postcolumn fluorescent labeling. Biomedical Applications, 1997, 693, 181-189.	1.7	49
42	DNA Nuclear Targeting Sequences for Non-Viral Gene Delivery. Pharmaceutical Research, 2011, 28, 1707-1722.	3.5	49
43	Cyclin-Dependent Kinase Inhibitor AT7519 as a Potential Drug for MYCN-Dependent Neuroblastoma. Clinical Cancer Research, 2015, 21, 5100-5109.	7.0	49
44	Formulation and characterization of microspheres loaded with imatinib for sustained delivery. International Journal of Pharmaceutics, 2015, 482, 123-130.	5.2	48
45	Delivery of the p38 MAPkinase Inhibitor SB202190 to Angiogenic Endothelial Cells:  Development of Novel RGD-Equipped and PEGylated Drugâ⁻ʾAlbumin Conjugates Using Platinum(II)-Based Drug Linker Technology. Bioconjugate Chemistry, 2006, 17, 1246-1255.	3.6	45
46	Cell-specific Delivery of a Transforming Growth Factor-beta Type I Receptor Kinase Inhibitor to Proximal Tubular Cells for the Treatment of Renal Fibrosis. Pharmaceutical Research, 2008, 25, 2427-2439.	3.5	44
47	Improved Efficacy of $\hat{l}\pm \langle sub \rangle v \langle sub \rangle \hat{l}^2 \langle sub \rangle 3 \langle sub \rangle$ -Targeted Albumin Conjugates by Conjugation of a Novel Auristatin Derivative. Molecular Pharmaceutics, 2007, 4, 686-694.	4.6	42
48	Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: an in vitro assessment. International Journal of Nanomedicine, 2016, Volume 11, 5027-5040.	6.7	40
49	PLGA-PEG nanoparticles for targeted delivery of the mTOR/PI3kinase inhibitor dactolisib to inflamed endothelium. International Journal of Pharmaceutics, 2018, 548, 747-758.	5.2	40
50	Local therapeutic efficacy with reduced systemic side effects by rapamycin-loaded subcapsular microspheres. Biomaterials, 2015, 42, 151-160.	11.4	39
51	Targeting epidermal growth factor receptor in tumors: From conventional monoclonal antibodies via heavy chain-only antibodies to nanobodies. European Journal of Pharmaceutical Sciences, 2012, 45, 399-407.	4.0	38
52	Thermosensitive liposomes for triggered release of cytotoxic proteins. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 211-221.	4.3	37
53	Sunitinib microspheres based on [PDLLA-PEG-PDLLA]-b-PLLA multi-block copolymers for ocular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 368-377.	4.3	36
54	Complement activation in vitro and reactogenicity of low-molecular weight dextran-coated SPIONs in the pig CARPA model: Correlation with physicochemical features and clinical information. Journal of Controlled Release, 2018, 270, 268-274.	9.9	36

#	Article	IF	Citations
55	Targeting Rapamycin to Podocytes Using a Vascular Cell Adhesion Molecule-1 (VCAM-1)-Harnessed SAINT-Based Lipid Carrier System. PLoS ONE, 2015, 10, e0138870.	2.5	35
56	Characterization of drug-lysozyme conjugates by sheathless capillary electrophoresis–time-of-flight mass spectrometry. Analytica Chimica Acta, 2011, 698, 77-83.	5.4	34
57	Rational Design of RGD–Albumin Conjugates for Targeted Delivery of the VEGF-R Kinase Inhibitor PTK787 to Angiogenic Endothelium. ChemMedChem, 2006, 1, 1200-1203.	3.2	33
58	Epac-Rap Signaling Reduces Oxidative Stress in the Tubular Epithelium. Journal of the American Society of Nephrology: JASN, 2014, 25, 1474-1485.	6.1	31
59	E-selectin targeted immunoliposomes for rapamycin delivery to activated endothelial cells. International Journal of Pharmaceutics, 2018, 548, 759-770.	5.2	31
60	Influence of cholesterol inclusion on the doxorubicin release characteristics of lysolipid-based thermosensitive liposomes. International Journal of Pharmaceutics, 2018, 548, 778-782.	5.2	30
61	Ultrasound-Sensitive Liposomes for Triggered Macromolecular Drug Delivery: Formulation and In Vitro Characterization. Frontiers in Pharmacology, 2019, 10, 1463.	3.5	30
62	Computer Modeling Assisted Design of Monodisperse PLGA Microspheres with Controlled Porosity Affords Zero Order Release of an Encapsulated Macromolecule for 3ÂMonths. Pharmaceutical Research, 2014, 31, 2844-2856.	3.5	29
63	Instability Mechanisms of Water-in-Oil Nanoemulsions with Phospholipids: Temporal and Morphological Structures. Langmuir, 2018, 34, 572-584.	3.5	29
64	<i>In Vitro</i> and <i>In Vivo</i> Studies on HPMA-Based Polymeric Micelles Loaded with Curcumin. Molecular Pharmaceutics, 2021, 18, 1247-1263.	4.6	29
65	Inhibition of Tumor Growth by Targeted Anti-EGFR/IGF-1R Nanobullets Depends on Efficient Blocking of Cell Survival Pathways. Molecular Pharmaceutics, 2013, 10, 3717-3727.	4.6	26
66	Quantitative analysis of receptor-mediated uptake and pro-apoptotic activity of mistletoe lectin-1 by high content imaging. Scientific Reports, 2018, 8, 2768.	3.3	26
67	Renal proximal tubular dysfunction is a major determinant of urinary connective tissue growth factor excretion. American Journal of Physiology - Renal Physiology, 2010, 298, F1457-F1464.	2.7	25
68	Imatinib-ULS-lysozyme: A proximal tubular cell-targeted conjugate of imatinib for the treatment of renal diseases. Journal of Controlled Release, 2012, 157, 461-468.	9.9	25
69	Locoregional cancer therapy using polymer-based drug depots. Drug Discovery Today, 2016, 21, 640-647.	6.4	25
70	Delivery of pharmacologically active dexamethasone into activated endothelial cells by dexamethasone–anti-E-selectin immunoconjugate. Biochemical Pharmacology, 2003, 65, 1729-1739.	4.4	24
71	Reversibly core-crosslinked PEG-P(HPMA) micelles: Platinum coordination chemistry for competitive-ligand-regulated drug delivery. Journal of Colloid and Interface Science, 2019, 535, 505-515.	9.4	23
72	Cellular handling of a dexamethasone-anti-E-selectin immunoconjugate by activated endothelial cells: comparison with free dexamethasone. Pharmaceutical Research, 2002, 19, 1730-1735.	3.5	22

#	Article	IF	Citations
73	A nonviral carrier for targeted gene delivery to tumor cells. Cancer Gene Therapy, 2004, 11, 156-164.	4.6	22
74	Renal targeting of kinase inhibitors. International Journal of Pharmaceutics, 2008, 364, 249-257.	5.2	22
75	Targeting of a platinum-bound sunitinib analog to renal proximal tubular cells. International Journal of Nanomedicine, 2012, 7, 417.	6.7	22
76	Anti-GD2 Immunoliposomes for Targeted Delivery of the Survivin Inhibitor Sepantronium Bromide (YM155) to Neuroblastoma Tumor Cells. Pharmaceutical Research, 2018, 35, 85.	3.5	22
77	Drug Delivery to the Kidneys and the Bladder with the Low Molecular Weight Protein Lysozyme. Renal Failure, 1998, 20, 211-217.	2.1	21
78	Intervention in growth factor activated signaling pathways by renally targeted kinase inhibitors. Journal of Controlled Release, 2008, 132, 200-207.	9.9	21
79	Effect of GFR on Plasma N-Terminal Connective Tissue Growth Factor (CTGF) Concentrations. American Journal of Kidney Diseases, 2012, 59, 619-627.	1.9	21
80	Sustained Release of Vascular Endothelial Growth Factor from Poly(ε-caprolactone-PEG-ε-caprolactone)- <i>b</i> -Vi>-Vi>-Vi>-Vi>-Vi>-Vi>-Vi>-Vi>-Vi>-V	3.5	21
81	Liposomes with asymmetric bilayers produced from inverse emulsions for nucleic acid delivery. Journal of Drug Targeting, 2019, 27, 681-689.	4.4	21
82	Folate decorated polymeric micelles for targeted delivery of the kinase inhibitor dactolisib to cancer cells. International Journal of Pharmaceutics, 2020, 582, 119305.	5.2	21
83	Fabrication and characterization of gefitinib-releasing polyurethane foam as a coating for drug-eluting stent in the treatment of bronchotracheal cancer. International Journal of Pharmaceutics, 2018, 548, 803-811.	5.2	20
84	Plasma CTGF is independently related to an increased risk of cardiovascular events and mortality in patients with atherosclerotic disease: the SMART study. Growth Factors, 2016, 34, 149-158.	1.7	19
85	Folate-dactolisib conjugates for targeting tubular cells in polycystic kidneys. Journal of Controlled Release, 2019, 293, 113-125.	9.9	19
86	RENAL-SELECTIVE DELIVERY AND ANGIOTENSIN-CONVERTING ENZYME INHIBITION BY SUBCUTANEOUSLY ADMINISTERED CAPTOPRIL-LYSOZYME. Drug Metabolism and Disposition, 2005, 33, 683-688.	3.3	18
87	Development of a Cell-Selective and Intrinsically Active Multikinase Inhibitor Bioconjugate. Bioconjugate Chemistry, 2011, 22, 540-545.	3.6	18
88	Targeted inhibition of renal Rho kinase reduces macrophage infiltration and lymphangiogenesis in acute renal allograft rejection. European Journal of Pharmacology, 2012, 694, 111-119.	3.5	18
89	Elevated Urinary Connective Tissue Growth Factor in Diabetic Nephropathy Is Caused by Local Production and Tubular Dysfunction. Journal of Diabetes Research, 2015, 2015, 1-11.	2.3	18
90	LIGAND-TARGETED LIPOSOMES DIRECTED AGAINST PATHOLOGICAL VASCULATURE. Journal of Liposome Research, 2002, 12, 129-135.	3.3	17

#	Article	IF	CITATIONS
91	Dendrimerâ€Based Macromolecular Conjugate for the Kidneyâ€Directed Delivery of a Multitargeted Sunitinib Analogue. Macromolecular Bioscience, 2012, 12, 93-103.	4.1	17
92	RGD-modified anti-CD3 antibodies redirect cytolytic capacity of cytotoxic T lymphocytes toward ?v?3-expressing endothelial cells. International Journal of Cancer, 2004, 112, 279-285.	5.1	16
93	Ligand-targeted Particulate Nanomedicines Undergoing Clinical Evaluation: Current Status. Fundamental Biomedical Technologies, 2016, , 163-200.	0.2	16
94	Organ- and Cell-Type Specific Delivery of Kinase Inhibitors: A Novel Approach in the Development of Targeted Drugs. Current Molecular Pharmacology, 2008, 1, 1-12.	1.5	15
95	Vascular Endothelial Growth Factor–Releasing Microspheres Based on Poly(ε-Caprolactone-PEG-ε-Caprolactone)-b-Poly(L-Lactide) Multiblock Copolymers Incorporated in a Three-Dimensional Printed Poly(Dimethylsiloxane) Cell Macroencapsulation Device. Journal of Pharmaceutical Sciences, 2020, 109, 863-870.	3.3	15
96	Inhibition of Octreotide Acylation Inside PLGA Microspheres by Derivatization of the Amines of the Peptide with a Self-Immolative Protecting Group. Bioconjugate Chemistry, 2016, 27, 576-585.	3.6	14
97	Hyperthermia-triggered release of hypoxic cell radiosensitizers from temperature-sensitive liposomes improves radiotherapy efficacy <i>in vitro</i> i>. Nanotechnology, 2019, 30, 264001.	2.6	14
98	PulmoStent: In Vitro to In Vivo Evaluation of a Tissue Engineered Endobronchial Stent. Annals of Biomedical Engineering, 2017, 45, 873-883.	2.5	13
99	Adsorption of phospholipids at oil/water interfaces during emulsification is controlled by stress relaxation and diffusion. Soft Matter, 2018, 14, 3730-3737.	2.7	12
100	Correlation between in vitro stability and pharmacokinetics of poly($\hat{l}\mu$ -caprolactone)-based micelles loaded with a photosensitizer. Journal of Controlled Release, 2020, 328, 942-951.	9.9	12
101	Post-loading of proangiogenic growth factors in PLGA microspheres. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 1-10.	4.3	12
102	Renal targeting of captopril using captopril-lysozyme conjugate enhances its antiproteinuric effect in adriamycin-induced nephrosis. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2004, 5, 197-202.	1.7	11
103	Biocompatibility of poly(d,l-lactic-co-hydroxymethyl glycolic acid) microspheres after subcutaneous and subcapsular renal injection. International Journal of Pharmaceutics, 2015, 482, 99-109.	5.2	11
104	Gefitinib/gefitinib microspheres loaded polyurethane constructs as drug-eluting stent coating. European Journal of Pharmaceutical Sciences, 2017, 103, 94-103.	4.0	11
105	RGD-avidin–biotin pretargeting to αvβ3 integrin enhances the proapoptotic activity of TNFα related apoptosis inducing ligand (TRAIL). Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 225-235.	4.9	10
106	Release and pharmacokinetics of near-infrared labeled albumin from monodisperse poly(d,l-lactic-co-hydroxymethyl glycolic acid) microspheres after subcapsular renal injection. Acta Biomaterialia, 2015, 22, 141-154.	8.3	8
107	Selection and fabrication of a non-woven polycarbonate urethane cover for a tissue engineered airway stent. International Journal of Pharmaceutics, 2016, 514, 255-262.	5.2	8
108	Bioanalysis and pharmacokinetics of the p38 MAPkinase inhibitor SB202190 in rats. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 826, 220-225.	2.3	7

#	Article	IF	Citations
109	Kinase Inhibitor Conjugates. Current Pharmaceutical Design, 2012, 18, 2891-2900.	1.9	7
110	Gene based therapies for kidney regeneration. European Journal of Pharmacology, 2016, 790, 99-108.	3.5	7
111	Assessing the Effects of VEGF Releasing Microspheres on the Angiogenic and Foreign Body Response to a 3D Printed Silicone-Based Macroencapsulation Device. Pharmaceutics, 2021, 13, 2077.	4.5	7
112	Synthesis and characterization of amino acid substituted sunitinib analogues for the treatment of AML. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2391-2398.	2.2	6
113	Ï€-Ï€-Stacked Poly(Îμ-caprolactone)-b-poly(ethylene glycol) Micelles Loaded with a Photosensitizer for Photodynamic Therapy. Pharmaceutics, 2020, 12, 338.	4.5	6
114	Novel Therapeutic Targets for the Treatment of Tubulointerstitial Fibrosis. Current Signal Transduction Therapy, 2008, 3, 97-111.	0.5	5
115	Antivascular Therapies: Targets Beyond the Vessel Wall. ChemMedChem, 2007, 2, 433-435.	3.2	4
116	Drug targeting to the kidneyâ~†. Advanced Drug Delivery Reviews, 2010, 62, 1323-1324.	13.7	3
117	Polymeric Micelles Employing Platinum(II) Linker for the Delivery of the Kinase Inhibitor Dactolisib. Particle and Particle Systems Characterization, 2019, 36, 1900236.	2.3	3
118	Connective Tissue Growth Factor Is Related to All-cause Mortality in Hemodialysis Patients and Is Lowered by On-line Hemodiafiltration: Results from the Convective Transport Study. Toxins, 2019, 11, 268.	3.4	3
119	Targeting of the VEGF-kinase inhibitor PTK787 to angiogenic vasculature using RGD-equipped albumin carrier molecules. Journal of Controlled Release, 2006, 116, e57.	9.9	1
120	Colloidal formulation of mistletoe extracts in a pharmaceutical flow process for targeted cancer therapy. Phytomedicine, 2019, 61, 1.	5.3	1
121	Targeted Delivery of Kinase Inhibitors: A Nanomedicine Approach for Improved Selectivity in Cancer. Current Signal Transduction Therapy, 2011, 6, 267-278.	0.5	1
122	Targets in Fibrotic Disorders. Pharmaceutical Research, 2008, 25, 2413-2415.	3.5	0
123	121 Tumor-targeted Nanobullets for Anti-cancer Combination Therapy. European Journal of Cancer, 2012, 48, 38.	2.8	0