Markus Schirle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9542753/publications.pdf

Version: 2024-02-01

62 papers 14,018 citations

76326 40 h-index 64 g-index

72 all docs 72 docs citations

times ranked

72

21982 citing authors

#	Article	IF	CITATIONS
1	A strategy to assess the cellular activity of E3 ligase components against neo-substrates using electrophilic probes. Cell Chemical Biology, 2022, 29, 57-66.e6.	5.2	9
2	PHY34 inhibits autophagy through V-ATPase V0A2 subunit inhibition and CAS/CSE1L nuclear cargo trafficking in high grade serous ovarian cancer. Cell Death and Disease, 2022, 13, 45.	6.3	10
3	Discovery of a Covalent FEM1B Recruiter for Targeted Protein Degradation Applications. Journal of the American Chemical Society, 2022, 144, 701-708.	13.7	99
4	Photo-Brook rearrangement of acyl silanes as a strategy for photoaffinity probe design. Chemical Science, 2022, 13, 3851-3856.	7.4	17
5	Deubiquitinase-targeting chimeras for targeted protein stabilization. Nature Chemical Biology, 2022, 18, 412-421.	8.0	128
6	Donor–Acceptor Pyridinium Salts for Photo-Induced Electron-Transfer-Driven Modification of Tryptophan in Peptides, Proteins, and Proteomes Using Visible Light. Journal of the American Chemical Society, 2022, 144, 6227-6236.	13.7	23
7	Chemoproteomics-enabled discovery of covalent RNF114-based degraders that mimic natural product function. Cell Chemical Biology, 2021, 28, 559-566.e15.	5.2	84
8	Proteomics in the pharmaceutical and biotechnology industry: a look to the next decade. Expert Review of Proteomics, 2021, 18, 503-526.	3.0	21
9	Chemoproteomics Enabled Discovery of Selective Probes for NuA4 Factor BRD8. ACS Chemical Biology, 2021, 16, 2185-2192.	3.4	4
10	BET bromodomain inhibitors regulate keratinocyte plasticity. Nature Chemical Biology, 2021, 17, 280-290.	8.0	12
11	Discovery of a Functional Covalent Ligand Targeting an Intrinsically Disordered Cysteine within MYC. Cell Chemical Biology, 2021, 28, 4-13.e17.	5.2	70
12	CPSF3-dependent pre-mRNA processing as a druggable node in AML and Ewing's sarcoma. Nature Chemical Biology, 2020, 16, 50-59.	8.0	59
13	Bardoxolone conjugation enables targeted protein degradation of BRD4. Scientific Reports, 2020, 10, 15543.	3.3	90
14	A Nimbolide-Based Kinase Degrader Preferentially Degrades Oncogenic BCR-ABL. ACS Chemical Biology, 2020, 15, 1788-1794.	3.4	67
15	Manumycin polyketides act as molecular glues between UBR7 and P53. Nature Chemical Biology, 2020, 16, 1189-1198.	8.0	79
16	Characterizing Drug–Target Interactions: Shifting towards the Clinic. Trends in Pharmacological Sciences, 2020, 41, 295-297.	8.7	4
17	A small-molecule inhibitor of C5 complement protein. Nature Chemical Biology, 2019, 15, 666-668.	8.0	17
18	Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nature Chemical Biology, 2019, 15, 747-755.	8.0	271

#	Article	IF	CITATIONS
19	Covalent Ligand Screening Uncovers a RNF4 E3 Ligase Recruiter for Targeted Protein Degradation Applications. ACS Chemical Biology, 2019, 14, 2430-2440.	3.4	213
20	An Activityâ€Based Probe Targeting Nonâ€Catalytic, Highly Conserved Amino Acid Residues within Bromodomains. Angewandte Chemie, 2019, 131, 1019-1024.	2.0	7
21	Previously Uncharacterized Vacuolar-type ATPase Binding Site Discovered from Structurally Similar Compounds with Distinct Mechanisms of Action. ACS Chemical Biology, 2019, 14, 20-26.	3.4	6
22	Discovery of a ZIP7 inhibitor from a Notch pathway screen. Nature Chemical Biology, 2019, 15, 179-188.	8.0	46
23	Identification of a novel NAMPT inhibitor by CRISPR/Cas9 chemogenomic profiling in mammalian cells. Scientific Reports, 2017, 7, 42728.	3.3	36
24	A Photoaffinity Labeling-Based Chemoproteomics Strategy for Unbiased Target Deconvolution of Small Molecule Drug Candidates. Methods in Molecular Biology, 2017, 1647, 1-18.	0.9	20
25	Direct Interaction of Chivosazole F with Actin Elicits Cell Responses Similar to Latrunculin A but Distinct from Chondramide. ACS Chemical Biology, 2017, 12, 2264-2269.	3.4	9
26	Tankyrase Inhibitor Sensitizes Lung Cancer Cells to Endothelial Growth Factor Receptor (EGFR) Inhibition via Stabilizing Angiomotins and Inhibiting YAP Signaling. Journal of Biological Chemistry, 2016, 291, 15256-15266.	3.4	63
27	Conversion of a Single Polypharmacological Agent into Selective Bivalent Inhibitors of Intracellular Kinase Activity. ACS Chemical Biology, 2016, 11, 121-131.	3.4	23
28	Identifying compound efficacy targets in phenotypic drug discovery. Drug Discovery Today, 2016, 21, 82-89.	6.4	127
29	Nannocystinâ€A: an Elongation Factor 1 Inhibitor from Myxobacteria with Differential Anti ancer Properties. Angewandte Chemie - International Edition, 2015, 54, 10149-10154.	13.8	91
30	Gift from Nature: Cyclomarinâ€A Kills Mycobacteria and Malaria Parasites by Distinct Modes of Action. ChemBioChem, 2015, 16, 2433-2436.	2.6	40
31	Quantitative Lys-ϵ-Gly-Gly (diGly) Proteomics Coupled with Inducible RNAi Reveals Ubiquitin-mediated Proteolysis of DNA Damage-inducible Transcript 4 (DDIT4) by the E3 Ligase HUWE1. Journal of Biological Chemistry, 2014, 289, 28942-28955.	3.4	57
32	Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nature Cell Biology, 2014, 16, 1069-1079.	10.3	534
33	Target identification for a Hedgehog pathway inhibitor reveals the receptor GPR39. Nature Chemical Biology, 2014, 10, 343-349.	8.0	53
34	Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature, 2014, 512, 49-53.	27.8	745
35	Deubiquitinase FAM/USP9X Interacts with the E3 Ubiquitin Ligase SMURF1 Protein and Protects It from Ligase Activity-dependent Self-degradation. Journal of Biological Chemistry, 2013, 288, 2976-2985.	3.4	103
36	Mass Spectrometry-Based Proteomics in Preclinical Drug Discovery. Chemistry and Biology, 2012, 19, 72-84.	6.0	156

3

#	Article	IF	Citations
37	Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nature Chemical Biology, 2011, 7, 639-647.	8.0	215
38	RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nature Cell Biology, 2011, 13, 623-629.	10.3	347
39	Bone Overgrowth-associated Mutations in the LRP4 Gene Impair Sclerostin Facilitator Function. Journal of Biological Chemistry, 2011, 286, 19489-19500.	3.4	255
40	Class III Phosphatidylinositol 4-Kinase Alpha and Beta Are Novel Host Factor Regulators of Hepatitis C Virus Replication. Journal of Virology, 2009, 83, 10058-10074.	3.4	179
41	Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature, 2009, 461, 614-620.	27.8	1,748
42	Post-translational Tyrosine Nitration of Eosinophil Granule Toxins Mediated by Eosinophil Peroxidase. Journal of Biological Chemistry, 2008, 283, 28629-28640.	3.4	41
43	Computational prediction of proteotypic peptides for quantitative proteomics. Nature Biotechnology, 2007, 25, 125-131.	17.5	653
44	Quantitative mass spectrometry in proteomics: a critical review. Analytical and Bioanalytical Chemistry, 2007, 389, 1017-1031.	3.7	1,448
45	Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006, 440, 631-636.	27.8	2,347
46	Multiple synergizing factors contribute to the strength of the CD8+ T cell response against listeriolysin O. International Immunology, 2006, 18, 89-100.	4.0	7
47	Scoring proteomes with proteotypic peptide probes. Nature Reviews Molecular Cell Biology, 2005, 6, 577-583.	37.0	344
48	Bartonella Adhesin A Mediates a Proangiogenic Host Cell Response. Journal of Experimental Medicine, 2004, 200, 1267-1278.	8.5	193
49	A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nature Cell Biology, 2004, 6, 97-105.	10.3	970
50	Profiling Core Proteomes of Human Cell Lines by One-dimensional PAGE and Liquid Chromatography-Tandem Mass Spectrometry. Molecular and Cellular Proteomics, 2003, 2, 1297-1305.	3.8	210
51	Identification of Tumor-Associated HLA-Ligands in the Post-Genomic Era. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 873-881.	1.8	3
52	Expression of the proteasome activator PA28 rescues the presentation of a cytotoxic T lymphocyte epitope on melanoma cells. Cancer Research, 2002, 62, 2875-82.	0.9	83
53	Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Research, 2002, 62, 5818-27.	0.9	161
54	The Biosynthesis of Vancomycin-Type Glycopeptide Antibiotics-The Order of the Cyclization Steps. Angewandte Chemie - International Edition, 2001, 40, 4688-4691.	13.8	134

#	Article	IF	CITATION
55	Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nature Immunology, 2001, 2, 1133-1137.	14.5	614
56	Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens. Journal of Immunological Methods, 2001, 257, 1-16.	1.4	89
57	A Naturally Processed Rat Major Histocompatibility Complex Class I-associated Viral Peptide as Target Structure of Borna Disease Virus-specific CD8+ T Cells. Journal of Biological Chemistry, 2001, 276, 13689-13694.	3.4	24
58	Two new proteases in the MHC class I processing pathway. Nature Immunology, 2000, 1, 413-418.	14.5	235
59	Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. European Journal of Immunology, 2000, 30, 2216.	2.9	14
60	The HLA-A*6601 peptide motif: prediction by pocket structure and verification by peptide analysis. Immunogenetics, 1999, 49, 571-576.	2.4	15
61	Peptide motif of HLA-B*1510. Immunogenetics, 1999, 49, 996-999.	2.4	6
62	Contribution of Proteasomal Î ² -Subunits to the Cleavage of Peptide Substrates Analyzed with Yeast Mutants. Journal of Biological Chemistry, 1998, 273, 25637-25646.	3.4	238