Wensheng Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9542059/publications.pdf Version: 2024-02-01

WENSHENCLIN

#	Article	IF	CITATIONS
1	Overcoming Trastuzumab Resistance in Breast Cancer by Targeting Dysregulated Glucose Metabolism. Cancer Research, 2011, 71, 4585-4597.	0.9	230
2	Endoplasmic reticulum stress in disorders of myelinating cells. Nature Neuroscience, 2009, 12, 379-385.	14.8	226
3	Interferon- \hat{I}^3 inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain, 2006, 129, 1306-1318.	7.6	185
4	Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-Î ³ . Journal of Cell Biology, 2005, 169, 603-612.	5.2	179
5	The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. Journal of Clinical Investigation, 2007, 117, 448-456.	8.2	166
6	Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF11±. Cancer Research, 2016, 76, 2231-2242.	0.9	107
7	Interferon-Â Induced Medulloblastoma in the Developing Cerebellum. Journal of Neuroscience, 2004, 24, 10074-10083.	3.6	105
8	Enhanced Integrated Stress Response Promotes Myelinating Oligodendrocyte Survival in Response to Interferon-γ. American Journal of Pathology, 2008, 173, 1508-1517.	3.8	91
9	Oligodendrocyte-Specific Activation of PERK Signaling Protects Mice against Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2013, 33, 5980-5991.	3.6	91
10	The unfolded protein response in multiple sclerosis. Frontiers in Neuroscience, 2015, 9, 264.	2.8	81
11	ZFP191 is required by oligodendrocytes for CNS myelination. Genes and Development, 2010, 24, 301-311.	5.9	71
12	Inducible production of interferon-γ in the developing brain causes cerebellar dysplasia with activation of the Sonic hedgehog pathway. Molecular and Cellular Neurosciences, 2004, 27, 489-496.	2.2	63
13	Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis. Brain, 2019, 142, 344-361.	7.6	55
14	Role of nuclear factor κB in multiple sclerosis and experimental autoimmune encephalomyelitis. Neural Regeneration Research, 2018, 13, 1507.	3.0	55
15	Regulation of PERK–eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes. Nature Communications, 2016, 7, 12185.	12.8	47
16	Interferon-Î ³ Activates Nuclear Factor-κ B in Oligodendrocytes through a Process Mediated by the Unfolded Protein Response. PLoS ONE, 2012, 7, e36408.	2.5	45
17	Impaired Eukaryotic Translation Initiation Factor 2B Activity Specifically in Oligodendrocytes Reproduces the Pathology of Vanishing White Matter Disease in Mice. Journal of Neuroscience, 2014, 34, 12182-12191.	3.6	44
18	NF-κB Activation Protects Oligodendrocytes against Inflammation. Journal of Neuroscience, 2017, 37, 9332-9344.	3.6	43

Wensheng Lin

#	Article	IF	CITATIONS
19	PERK Activation Preserves the Viability and Function of Remyelinating Oligodendrocytes in Immune-Mediated Demyelinating Diseases. American Journal of Pathology, 2014, 184, 507-519.	3.8	40
20	Interferonâ€Î³ inhibits central nervous system myelination through both STAT1â€dependent and STAT1â€independent pathways. Journal of Neuroscience Research, 2010, 88, 2569-2577.	2.9	36
21	Unfolded protein response in myelin disorders. Neural Regeneration Research, 2020, 15, 636.	3.0	31
22	Pancreatic Endoplasmic Reticulum Kinase Activation Promotes Medulloblastoma Cell Migration and Invasion through Induction of Vascular Endothelial Growth Factor A. PLoS ONE, 2015, 10, e0120252.	2.5	29
23	A deregulated integrated stress response promotes interferonâ€Î³â€induced medulloblastoma. Journal of Neuroscience Research, 2011, 89, 1586-1595.	2.9	22
24	Activating transcription factor 6α deficiency exacerbates oligodendrocyte death and myelin damage in immuneâ€mediated demyelinating diseases. Glia, 2018, 66, 1331-1345.	4.9	22
25	Oligodendrocyte-specific ATF4 inactivation does not influence the development of EAE. Journal of Neuroinflammation, 2019, 16, 23.	7.2	21
26	NF-κB Activation Accounts for the Cytoprotective Effects of PERK Activation on Oligodendrocytes during EAE. Journal of Neuroscience, 2020, 40, 6444-6456.	3.6	18
27	The Integrated UPR and ERAD in Oligodendrocytes Maintain Myelin Thickness in Adults by Regulating Myelin Protein Translation. Journal of Neuroscience, 2020, 40, 8214-8232.	3.6	17
28	PERK Activation Promotes Medulloblastoma Tumorigenesis by Attenuating Premalignant Granule Cell Precursor Apoptosis. American Journal of Pathology, 2016, 186, 1939-1951.	3.8	16
29	Neuron-specific PERK inactivation exacerbates neurodegeneration during experimental autoimmune encephalomyelitis. JCI Insight, 2019, 4, .	5.0	16
30	Inhibition of Vascular Endothelial Growth Factor Receptor 2 Exacerbates Loss of Lower Motor Neurons and Axons during Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2016, 11, e0160158.	2.5	16
31	Dual role of the integrated stress response in medulloblastoma tumorigenesis. Oncotarget, 2016, 7, 64124-64135.	1.8	15
32	The UPR preserves mature oligodendrocyte viability and function in adults by regulating autophagy of PLP. JCI Insight, 2020, 5, .	5.0	12
33	Effect of Suppression of TGF-β1 Expression on Cell-Cycle and Gene Expression of β-1,4-Galactosyltransferase 1 in Human Hepatocarcinoma Cells. Biochemical and Biophysical Research Communications, 2000, 273, 833-838.	2.1	11
34	Neuroprotective effects of vascular endothelial growth factor A in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neural Regeneration Research, 2017, 12, 70.	3.0	9
35	Endoplasmic reticulum associated degradation is required for maintaining endoplasmic reticulum homeostasis and viability of mature <scp>Schwann</scp> cells in adults. Glia, 2021, 69, 489-506.	4.9	8
36	A Subgenomic Segment of Theiler's Murine Encephalomyelitis Virus RNA Causes Demyelination. Journal of Virology, 2008, 82, 5879-5886.	3.4	6

#	Article	IF	CITATIONS
37	Impaired eIF2B activity in ligodendrocytes contributes to VWMD pathogenesis. Neural Regeneration Research, 2015, 10, 195.	3.0	6
38	Upregulation of MMP-2 by all-trans retinoic acid is mediated by TGF- β 1 in cultured rat mesangial cell. Fibrinolysis and Proteolysis, 2000, 14, 235-241.	1.1	0
39	Detection of PERK Signaling in the Central Nervous System. Methods in Molecular Biology, 2022, 2378, 233-245.	0.9	0