Helena E Hagelin-Weaver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9541884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3. Applied Catalysis B: Environmental, 2009, 90, 195-204.	20.2	101
2	Characterization of Mn–Na2WO4/SiO2 and Mn–Na2WO4/MgO catalysts for the oxidative coupling of methane. Applied Catalysis A: General, 2015, 497, 96-106.	4.3	81
3	Strong Metal–Support Interactions Enhance the Pairwise Selectivity of Parahydrogen Addition over Ir/TiO ₂ . ACS Catalysis, 2016, 6, 974-978.	11.2	80
4	Silicaâ€Encapsulated Ptâ€5n Intermetallic Nanoparticles: A Robust Catalytic Platform for Parahydrogenâ€Induced Polarization of Gases and Liquids. Angewandte Chemie - International Edition, 2017, 56, 3925-3929.	13.8	73
5	Shaped Ceria Nanocrystals Catalyze Efficient and Selective Paraâ€Hydrogenâ€Enhanced Polarization. Angewandte Chemie - International Edition, 2015, 54, 14270-14275.	13.8	70
6	Parahydrogen-Induced Polarization by Pairwise Replacement Catalysis on Pt and Ir Nanoparticles. Journal of the American Chemical Society, 2015, 137, 1938-1946.	13.7	56
7	Effects of alkali and alkaline-earth metal dopants on magnesium oxide supported rare-earth oxide catalysts in the oxidative coupling of methane. Applied Catalysis A: General, 2016, 528, 175-190.	4.3	55
8	Effects of Li Doping on MgO-Supported Sm ₂ O ₃ and TbO _{<i>x</i>} Catalysts in the Oxidative Coupling of Methane. ACS Catalysis, 2014, 4, 1972-1990.	11.2	45
9	Oxidative coupling of methane over unsupported and alumina-supported samaria catalysts. Applied Catalysis A: General, 2013, 454, 100-114.	4.3	40
10	Silicaâ€Encapsulated Ptâ€&n Intermetallic Nanoparticles: A Robust Catalytic Platform for Parahydrogenâ€Induced Polarization of Gases and Liquids. Angewandte Chemie, 2017, 129, 3983-3987.	2.0	37
11	Ultra‣ow Loading Pt/CeO ₂ Catalysts: Ceria Facet Effect Affords Improved Pairwise Selectivity for Parahydrogen Enhanced NMR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 4038-4042.	13.8	32
12	Semihydrogenation of Propyne over Cerium Oxide Nanorods, Nanocubes, and Nanoâ€Octahedra: Facetâ€Dependent Parahydrogenâ€Induced Polarization. ChemCatChem, 2016, 8, 2197-2201.	3.7	26
13	Characterization of alumina-supported palladium oxide catalysts used in the oxidative coupling of 4-methylpyridine. Journal of Molecular Catalysis A, 2010, 325, 25-35.	4.8	17
14	Toward Continuousâ€Flow Hyperpolarisation of Metabolites via Heterogenous Catalysis, Sideâ€Armâ€Hydrogenation, and Membrane Dissolution of Parahydrogen. ChemPhysChem, 2021, 22, 822-827.	2.1	15
15	The influence of ZnO, CeO2 and ZrO2 on nanoparticle-oxide-supported palladium oxide catalysts for the oxidative coupling of 4-methylpyridine. Journal of Molecular Catalysis A, 2011, 341, 42-50.	4.8	14
16	Effects of nanoparticle and porous metal oxide supports on the activity of palladium catalysts in the oxidative coupling of 4-methylpyridine. Journal of Molecular Catalysis A, 2009, 307, 29-36.	4.8	12
17	Doped samarium oxide xerogels for oxidative coupling of methane—Effects of high-valence dopants at very low concentrations. Catalysis Today, 2021, 365, 46-57.	4.4	11
18	Effect of ceria surface facet on stability and reactivity of isolated platinum atoms. Nano Research, 2022, 15, 5922-5932.	10.4	11

#	Article	IF	CITATIONS
19	Sol–Gel Preparation of Samaria Catalysts for the Oxidative Coupling of Methane. Catalysis Letters, 2015, 145, 1251-1261.	2.6	10
20	lron precipitated onto ceria-zirconia nanoparticle mixtures for the production of hydrogen via two-step thermochemical water splitting. International Journal of Hydrogen Energy, 2018, 43, 12970-12984.	7.1	7
21	Transition-metal doped, magnesium oxide-supported terbium oxides as catalysts for the oxidative coupling of methane. Polyhedron, 2019, 170, 602-611.	2.2	7
22	Effects of low molar concentrations of low-valence dopants on samarium oxide xerogels in the oxidative coupling of methane. Catalysis Today, 2021, 365, 58-70.	4.4	7
23	Ultraâ€Low Loading Pt/CeO 2 Catalysts: Ceria Facet Effect Affords Improved Pairwise Selectivity for Parahydrogen Enhanced NMR Spectroscopy. Angewandte Chemie, 2021, 133, 4084-4088.	2.0	5
24	Surface Science: Foundations of Catalysis and Nanoscience. Journal of Nanoparticle Research, 2002, 4, 575-576.	1.9	2
25	Frontispiece: Shaped Ceria Nanocrystals Catalyze Efficient and Selective Paraâ€Hydrogenâ€Enhanced Polarization. Angewandte Chemie - International Edition, 2015, 54, .	13.8	Ο