Luca Aquili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9541270/publications.pdf

Version: 2024-02-01

933447 839539 25 395 10 18 h-index citations g-index papers 27 27 27 560 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A dopaminergic switch for fear to safety transitions. Nature Communications, 2018, 9, 2483.	12.8	128
2	Dopamine depletion effects on cognitive flexibility as modulated by tDCS of the dlPFC. Brain Stimulation, 2020, 13, 105-108.	1.6	32
3	Therapeutic potential of neurogenesis and melatonin regulation in Alzheimer's disease. Annals of the New York Academy of Sciences, 2020, 1478, 43-62.	3.8	25
4	Behavioral flexibility is increased by optogenetic inhibition of neurons in the nucleus accumbens shell during specific time segments. Learning and Memory, 2014, 21, 223-231.	1.3	24
5	Ginseng and Ginkgo Biloba Effects on Cognition as Modulated by Cardiovascular Reactivity: A Randomised Trial. PLoS ONE, 2016, 11, e0150447.	2.5	24
6	Role of melatonin in Alzheimer's disease: From preclinical studies to novel melatonin-based therapies. Frontiers in Neuroendocrinology, 2022, 65, 100986.	5.2	22
7	Catecholaminergic modulation of indices of cognitive flexibility: AÂpharmaco-tDCS study. Brain Stimulation, 2019, 12, 290-295.	1.6	17
8	Dysregulation of the orexinergic system: A potential neuropeptide target in depression. Neuroscience and Biobehavioral Reviews, 2020, 118, 384-396.	6.1	17
9	The Role of Tryptophan and Tyrosine in Executive Function and Reward Processing. International Journal of Tryptophan Research, 2020, 13, 117864692096482.	2.3	15
10	Impulsiveness, postprandial blood glucose, and glucoregulation affect measures of behavioral flexibility. Nutrition Research, 2017, 48, 65-75.	2.9	11
11	A Decade of Progress in Deep Brain Stimulation of the Subcallosal Cingulate for the Treatment of Depression. Journal of Clinical Medicine, 2020, 9, 3260.	2.4	11
12	Dissociable Effects of Tryptophan Supplementation on Negative Feedback Sensitivity and Reversal Learning. Frontiers in Behavioral Neuroscience, 2019, 13, 127.	2.0	9
13	Transcorneal electrical stimulation enhances cognitive functions in aged and 5XFAD mouse models. Annals of the New York Academy of Sciences, 2022, 1515, 249-265.	3.8	8
14	GABA Supplementation Negatively Affects Cognitive Flexibility Independent of Tyrosine. Journal of Clinical Medicine, 2021, 10, 1807.	2.4	7
15	The causal role between phasic midbrain dopamine signals and learning. Frontiers in Behavioral Neuroscience, 2014, 8, 139.	2.0	6
16	Tyrosine negatively affects flexible-like behaviour under cognitively demanding conditions. Journal of Affective Disorders, 2020, 260, 329-333.	4.1	6
17	Behavioural responses of anxiety in aversive and non-aversive conditions between young and aged Sprague-Dawley rats. Behavioural Brain Research, 2020, 385, 112559.	2.2	6
18	Eyeblink rate, a putative dopamine marker, predicts negative reinforcement learning by tDCS of the dlPFC. Brain Stimulation, 2022, 15, 533-535.	1.6	6

#	Article	IF	CITATIONS
19	Fear expression is suppressed by tyrosine administration. Scientific Reports, 2019, 9, 16073.	3.3	5
20	Serotonergic treatment normalizes midbrain dopaminergic neuron increase after periaqueductal gray stimulation. Brain Structure and Function, 2020, 225, 1957-1966.	2.3	4
21	Functional Roles of Neuronal Nitric Oxide Synthase in Neurodegenerative Diseases and Mood Disorders. Current Alzheimer Research, 2021, 18, .	1.4	4
22	Development of a tool to accurately predict UK REF funding allocation. Scientometrics, 2021, 126, 8049-8062.	3.0	3
23	A Brief Comparative Look at Experimental Memory Editing Techniques for Cognitive Dysfunction. Current Alzheimer Research, 2021, 18, 841-848.	1.4	3
24	Occasion setters determine responses of putative DA neurons to discriminative stimuli. Neurobiology of Learning and Memory, 2020, 173, 107270.	1.9	1
25	How have COVIDâ€19 stringency measures changed scholarly activity?. Annals of the New York Academy of Sciences, 2022, , .	3.8	1