Mohamad T Ahmadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9540437/publications.pdf

Version: 2024-02-01

394421 552781 198 1,408 19 26 citations g-index h-index papers 198 198 198 959 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Schemes for Single Electron Transistor Based on Double Quantum Dot Islands Utilizing a Graphene Nanoscroll, Carbon Nanotube and Fullerene. Molecules, 2022, 27, 301.	3.8	1
2	Theoretical analysis on the electronic properties of bubble-wrap carbon nanostructure: fullerene-doped graphene. Journal of Computational Electronics, 2022, 21, 214-226.	2.5	2
3	Contact Effect On Twisted Graphene Based Schottky Transistor. ECS Journal of Solid State Science and Technology, 2022, 11, 031005.	1.8	1
4	Thermoelectric Effect on Linear Array of Graphene-Based Materials Including Fullerene, Twisted Graphene, and Graphene Nanoribbon. ECS Journal of Solid State Science and Technology, 2022, 11, 051002.	1.8	2
5	Investigating the Semi-Analytical Models of Momentum Relaxation Mean Free Time and Path and Ionization Coefficient of Trilayer Graphene Nanoribbon- Based FETs. ECS Journal of Solid State Science and Technology, 2022, 11, 071006.	1.8	3
6	Analytical modeling of graphene oxide based memristor. Ain Shams Engineering Journal, 2021, 12, 1741-1748.	6.1	6
7	Graphene Nanoparticle-Based, Nitrate Ion Sensor Characteristics. Nanomaterials, 2021, 11, 150.	4.1	6
8	The current analysis of a single electron transistor based on double graphene nanoscroll island. Solid State Communications, 2021, 327, 114234.	1.9	2
9	Silicon Doping Effect on the Electronic Behavior of Graphene Nanoscrolls. Journal of Electronic Materials, 2021, 50, 2903-2910.	2.2	1
10	Monolayer Twisted Graphene-Based Schottky Transistor. Materials, 2021, 14, 4109.	2.9	2
11	First Principal Simulation Study of Human Body Compatible Molecular Single Electron Transistor. IEEE Access, 2021, , 1-1.	4.2	O
12	Graphene Nanoscroll Geometry Effect on Transistor Performance. Journal of Electronic Materials, 2020, 49, 544-550.	2.2	9
13	Graphene band engineering for resistive random-access memory application. International Journal of Modern Physics B, 2020, 34, 2050171.	2.0	O
14	Carbon Nanoparticle-Based Electro-Thermal Building Block. Applied Sciences (Switzerland), 2020, 10, 5117.	2.5	0
15	Bandgap modulation of low-dimensional \hat{l}^3 -graphyne-1 under uniform strain. Journal of Computational Electronics, 2020, 19, 947-956.	2.5	6
16	Coulomb Blockade Effect in Well-Arranged 2D Arrays of Palladium Nano-Islands for Hydrogen Detection at Room Temperature: A Modeling Study. Nanomaterials, 2020, 10, 835.	4.1	0
17	Arc discharge technique to fabricate nanocarbon gas sensing platform. Superlattices and Microstructures, 2020, 141, 106479.	3.1	0
18	Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling. Materials, 2020, 13, 1026.	2.9	2

#	Article	IF	Citations
19	An Analytical Conductance Model for Gas Detection Based on a Zigzag Carbon Nanotube Sensor. Sensors, 2020, 20, 357.	3.8	4
20	An Analytical Approach for Current Modeling in a Single Electron Transistor (SET) Utilizing Graphene Nanoscroll (GNS) as the Island. ECS Journal of Solid State Science and Technology, 2020, 9, 071001.	1.8	2
21	Phosphorene as H ₂ S and CH ₄ Gas Sensor. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800086.	1.8	26
22	Effect of solution pH and adsorbent concentration on the sensing parameters of TGNâ€based electrochemical sensor. IET Nanobiotechnology, 2019, 13, 584-592.	3.8	4
23	Analytical modeling of phosphorene-based NO2 gas sensor. International Journal of Modern Physics B, 2019, 33, 1950143.	2.0	2
24	Quantum Capacitance Model for Graphene FET-Based Gas Sensor. IEEE Sensors Journal, 2019, 19, 3726-3732.	4.7	17
25	A carrier velocity model for electrical detection of gas molecules. Beilstein Journal of Nanotechnology, 2019, 10, 644-653.	2.8	1
26	The effects of a Stone–Wales defect on the performance of a graphene-nanoribbon-based Schottky diode. Journal of Computational Electronics, 2019, 18, 802-812.	2.5	9
27	Investigating the electrical characteristics of a single electron transistor utilizing graphene nanoribbon as the island. Journal of Materials Science: Materials in Electronics, 2019, 30, 8007-8013.	2.2	10
28	Electrical conductivity and Einstein relation modeling in phosphorene. International Journal of Modern Physics B, 2019, 33, 1950033.	2.0	0
29	Impact of Chiral Indices on the Performance of Single Electron Transistor Utilizing Carbon Nanotube Island. ECS Journal of Solid State Science and Technology, 2019, 8, M26-M29.	1.8	3
30	Quantum conductance investigation on carbon nanotube–based antibiotic sensor. Journal of Solid State Electrochemistry, 2019, 23, 1641-1650.	2.5	13
31	Band Gap Modulation by Two-Dimensional h-BN Nanostructure. Physics of the Solid State, 2019, 61, 2194-2199.	0.6	3
32	The impact of vacancy defects on the performance of a single-electron transistor with a carbon nanotube island. Journal of Computational Electronics, 2019, 18, 428-435.	2.5	10
33	THE BAND ENERGY ENGINEERING ON HIGH EPOXY (OR HYDROXYL) CONTENT GRAPHENE OXIDE. Surface Review and Letters, 2019, 26, 1850135.	1.1	2
34	The Geometry Variation Effect on Carbon Atom Wire for Nano-Electronic Applications. Journal of Nanoelectronics and Optoelectronics, 2019, 14, 1120-1125.	0.5	5
35	The Analytical Investigation of Quantum Capacitance on Graphene Oxide Based Memristor. Journal of Nanoelectronics and Optoelectronics, 2019, 14, 1083-1087.	0.5	0
36	Performance analysis of one dimensional BC 2 N for nanoelectronics applications. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 102, 33-38.	2.7	8

#	Article	IF	Citations
37	An analytical approach to model capacitance and resistance of capped carbon nanotube single electron transistor. AEU - International Journal of Electronics and Communications, 2018, 90, 97-102.	2.9	28
38	Electrical parameters retrieval of carbon nanoparticle-based metal semiconductor metal structure by standard methods and beta-ray-induced charge. Radiation Effects and Defects in Solids, 2018, 173, 367-376.	1.2	0
39	Analytical modelling and simulation of gas adsorption effects on graphene nanoribbon electrical properties. Molecular Simulation, 2018, 44, 551-557.	2.0	8
40	Impact of Hydrogen Adsorption on the Performance of a Single Electron Transistor Utilizing Fullerene Quantum Dots. ECS Journal of Solid State Science and Technology, 2018, 7, M191-M194.	1.8	4
41	Single Electron Transistor Scheme Based on Multiple Quantum Dot Islands: Carbon Nanotube and Fullerene. ECS Journal of Solid State Science and Technology, 2018, 7, M145-M152.	1.8	17
42	Analysis and Modeling of Fullerene Single Electron Transistor Based on Quantum Dot Arrays at Room Temperature. Journal of Electronic Materials, 2018, 47, 4799-4806.	2.2	13
43	Analysis and modeling of quantum capacitance on graphene single electron transistor. International Journal of Modern Physics B, 2018, 32, 1850235.	2.0	9
44	Carbon Nano-particle Synthesized by Pulsed Arc Discharge Method as a Light Emitting Device. Journal of Electronic Materials, 2018, 47, 4003-4009.	2.2	7
45	Analysis of Co-Tunneling Current in Fullerene Single-Electron Transistor. Brazilian Journal of Physics, 2018, 48, 406-410.	1.4	5
46	Experimental and theoretical investigation of sensing parameters in carbon nanotubeâ€based DNA sensor. IET Nanobiotechnology, 2018, 12, 1125-1129.	3.8	5
47	Fabrication of Carbon Nanoparticle Strand under Pulsed Arc Discharge. Plasmonics, 2018, 13, 2377-2386.	3.4	9
48	Analysis and Simulation of Coulomb Blockade and Coulomb Diamonds in Fullerene Single Electron Transistors. Journal of Nanoelectronics and Optoelectronics, 2018, 13, 138-143.	0.5	11
49	An Analytical Approach to Model the Optical Properties of Carbon Nanotubes for Plasmonic Devices. Journal of Nanoelectronics and Optoelectronics, 2018, 13, 208-213.	0.5	2
50	Graphene Nanoribbon Field Effect Transistors. , 2018, , 149-162.		1
51	Set Characteristics of Bipolar Graphene Oxide Based Memristor. Journal of Nanoelectronics and Optoelectronics, 2018, 13, 119-124.	0.5	1
52	Carrier Transport, Current–Voltage Characteristics of BGN. , 2018, , 163-185.		0
53	Analytical Modeling of Current–Voltage Characteristics of Phosphorene Based Field Effect Transistor. Journal of Nanoelectronics and Optoelectronics, 2018, 13, 1478-1481.	0.5	0
54	Electrical Properties of MWCNT/HDPE Composite-Based MSM Structure Under Neutron Irradiation. Journal of Electronic Materials, 2017, 46, 2548-2555.	2.2	8

#	Article	IF	CITATIONS
55	Current Analysis and Modeling of Fullerene Single-Electron Transistor at Room Temperature. Journal of Electronic Materials, 2017, 46, 4294-4298.	2.2	16
56	Gas adsorption effect on the graphene nanoribbon band structure and quantum capacitance. Adsorption, 2017, 23, 767-777.	3.0	19
57	Graphene Based Biosensor Model for <i>Escherichia Coli</i> Bacteria Detection. Journal of Nanoscience and Nanotechnology, 2017, 17, 601-605.	0.9	20
58	Analytical investigation on the electrooptical properties of graphene nanoscrolls for SPR-based sensor application. Journal of Computational Electronics, 2017, 16, 787-795.	2.5	9
59	Graphene/Graphene Oxide-Based Ultrasensitive Surface Plasmon Resonance Biosensor. Plasmonics, 2017, 12, 1991-1997.	3.4	29
60	Carrier relaxation time modelling of monolayer black phosphorene. Micro and Nano Letters, 2017, 12, 758-762.	1.3	3
61	Analytical prediction of carbon nanoscroll-based electrochemical glucose biosensor performance. International Journal of Environmental Analytical Chemistry, 2017, 97, 1024-1036.	3.3	7
62	Band gap engineering of BC 2 N for nanoelectronic applications. Superlattices and Microstructures, 2017, 112, 328-338.	3.1	16
63	Analytical Modeling of Acoustic Phonon-Limited Mobility in Strained Graphene Nanoribbons. Journal of Electronic Materials, 2017, 46, 6553-6562.	2.2	3
64	Investigating the Mobility of Trilayer Graphene Nanoribbon in Nanoscale FETs. Journal of Electronic Materials, 2017, 46, 6188-6194.	2.2	5
65	The Effect of Molecular Adsorption on Electro-Optical Properties of Graphene-Based Sensors. Plasmonics, 2017, 12, 1193-1198.	3.4	5
66	Analytical study of the electronic properties of boron nitride nanosheet. , 2017, , .		2
67	Quantum Transport Mode in Graphene Nanoribbon Based Transistor. Journal of Nanoelectronics and Optoelectronics, 2017, 12, 886-890.	0.5	1
68	Modeling Trilayer Graphene-Based DET Characteristics for a Nanoscale Sensor. Advances in Computer and Electrical Engineering Book Series, 2017, , 19-38.	0.3	2
69	Graphene-Based Gas Sensor Theoretical Framework. Advances in Computer and Electrical Engineering Book Series, 2017, , 117-149.	0.3	1
70	Graphene and CNT Field Effect Transistors Based Biosensor Models. Advances in Computer and Electrical Engineering Book Series, 2017, , 294-333.	0.3	2
71	GAS Sensor Modelling and Simulation. Advances in Computer and Electrical Engineering Book Series, 2017, , 70-116.	0.3	1
72	Fast Neuron Detection. Advances in Computer and Electrical Engineering Book Series, 2017, , 395-422.	0.3	0

#	Article	IF	CITATIONS
73	Surface Plasmon Resonance-Based Sensor Modeling. Advances in Computer and Electrical Engineering Book Series, 2017, , 361-394.	0.3	O
74	Graphene Based-Biosensor. Advances in Computer and Electrical Engineering Book Series, 2017, , 265-293.	0.3	1
75	Carbon Materials Based Ion Sensitive Field Effect Transistor (ISFET). Advances in Computer and Electrical Engineering Book Series, 2017, , 334-360.	0.3	0
76	Modeling of Sensing Layer of Surface Acoustic-Wave-Based Gas Sensors. Advances in Computer and Electrical Engineering Book Series, 2017, , 224-243.	0.3	0
77	Development of Gas Sensor Model for Detection of NO2 Molecules Adsorbed on Defect-Free and Defective Graphene. Advances in Computer and Electrical Engineering Book Series, 2017, , 208-223.	0.3	0
78	Influences of Sr-90 beta-ray irradiation on electrical characteristics of carbon nanoparticles. Journal of Applied Physics, 2016, 119, 124510.	2.5	8
79	Graphene embedded surface plasmon resonance based sensor prediction model. Optical and Quantum Electronics, 2016, 48, 1.	3.3	6
80	Modeling and simulation of graphene-oxide-based RRAM. Journal of Computational Electronics, 2016, 15, 602-610.	2.5	13
81	Carrier velocity effect on carbon nanotube Schottky contact. Semiconductors, 2016, 50, 1056-1059.	0.5	0
82	Strain effect on graphene nanoribbon carrier statistic in the presence of non-parabolic band structure. Chinese Physics B, 2016, 25, 096802.	1.4	2
83	Electrical Property Analytical Prediction on Archimedes Chiral Carbon Nanoscrolls. Journal of Electronic Materials, 2016, 45, 5404-5411.	2.2	10
84	Engineer-able optical properties of trilayer graphene nanoribbon. Physica Scripta, 2016, 91, 035802.	2.5	4
85	Modelling Effective Charge Density in Graphene-Based DNA Sensor. Science of Advanced Materials, 2016, 8, 1187-1194.	0.7	1
86	SWCNT-Based Biosensor Modelling for pH Detection. Journal of Nanomaterials, 2015, 2015, 1-7.	2.7	12
87	Contact Effect on the Current–Voltage Characteristic of Graphene Nanoribbon Based Schottky Diode. Journal of Computational and Theoretical Nanoscience, 2015, 12, 478-483.	0.4	3
88	An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH ₃ gas sensor applications. Beilstein Journal of Nanotechnology, 2014, 5, 726-734.	2.8	23
89	Bilayer Graphene Application on NO ₂ Sensor Modelling. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	12
90	Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll. Journal of Nanomaterials, 2014, 2014, 1-6.	2.7	13

#	Article	IF	Citations
91	Modeling of Nanodevices and Nanostructures. Journal of Nanomaterials, 2014, 2014, 1-2.	2.7	1
92	Analytical Calculation of Sensing Parameters on Carbon Nanotube Based Gas Sensors. Sensors, 2014, 14, 5502-5515.	3.8	31
93	Quantum confinement effect on trilayer graphene nanoribbon carrier concentration. Journal of Experimental Nanoscience, 2014, 9, 51-63.	2.4	7
94	Current–voltage modeling of graphene-based DNA sensor. Neural Computing and Applications, 2014, 24, 85-89.	5.6	15
95	The effect of concentration on gas sensor model based on graphene nanoribbon. Neural Computing and Applications, 2014, 24, 143-146.	5.6	15
96	Development of solution-gated graphene transistor model for biosensors. Nanoscale Research Letters, 2014, 9, 71.	5.7	30
97	Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Research Letters, 2014, 9, 33.	5.7	50
98	Gas Concentration Effects on the Sensing Properties of Bilayer Graphene. Plasmonics, 2014, 9, 987-992.	3.4	11
99	Analytical prediction of liquid-gated graphene nanoscroll biosensor performance. RSC Advances, 2014, 4, 16153.	3.6	23
100	Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor. Nanoscale Research Letters, 2014, 9, 371.	5.7	12
101	Semi Analytical Modeling of Quantum Capacitance of Graphene-Based Ion Sensitive Field Effect Transistor. Journal of Computational and Theoretical Nanoscience, 2014, 11, 596-600.	0.4	4
102	Structural and Properties of Graphene Nanobelts Rolled Up Into Spiral by a Single Graphene Sheet. Journal of Computational and Theoretical Nanoscience, 2014, 11, 601-606.	0.4	7
103	A Unified Drain–Current Model of Silicon Nanowire Field-Effect Transistor (SiNWFET) for Performance Metric Evaluation. Science of Advanced Materials, 2014, 6, 354-360.	0.7	7
104	Development of Carbon Nanotube Based Biosensors Model for Detection of Single-Nucleotide Polymorphism. Science of Advanced Materials, 2014, 6, 513-519.	0.7	18
105	Carrier Velocity in High-Field Transport of Trilayer Graphene Nanoribbon Field Effect Transistor. Science of Advanced Materials, 2014, 6, 633-639.	0.7	5
106	Analytical Study of Electronic Structure in Archimedean Type-Spiral Zig-Zag Graphene Nanoscroll. Current Nanoscience, 2014, 11, 87-94.	1.2	3
107	Analytical modelling of monolayer graphene-based ion-sensitive FET to pH changes. Nanoscale Research Letters, 2013, 8, 173.	5.7	32
108	Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications. Nanoscale Research Letters, 2013, 8, 55.	5.7	23

#	Article	IF	CITATIONS
109	Effect of strain on doped graphene-based N/I/S junction with d-wave superconductivity. Superlattices and Microstructures, 2013, 63, 58-69.	3.1	2
110	Graphene Nanoribbon Based Gas Sensor. Key Engineering Materials, 2013, 553, 7-11.	0.4	19
111	QUANTUM CAPACITANCE EFFECT ON ZIG-ZAG GRAPHENE NANOSCROLLS (ZGNS) (16, 0). Modern Physics Letters B, 2013, 27, 1350002.	1.9	4
112	Schottky barrier lowering effect on graphene nanoribbon based schottky diode. , 2013, , .		1
113	Bilayer Graphene Nanoribbon Mobility Model in Ballistic Transport Limit. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1262-1265.	0.4	1
114	Perpendicular Electric Field Effect on Bilayer Graphene Carrier Statistic. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1975-1978.	0.4	8
115	Monolayer Graphene Based CO ₂ Gas Sensor Analytical Model. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1301-1304.	0.4	17
116	Graphene Nanoribbon Field Effect Transistor Logic Gates Performance Projection. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1164-1170.	0.4	15
117	The Effect of Interconnect on the Circuit Performance of 22 nm Graphene Nanoribbon Field Effect Transistor and MOSFET. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1305-1309.	0.4	2
118	Geometry Effect on Graphene Nanoscrolls Band Gap. Journal of Computational and Theoretical Nanoscience, 2013, 10, 581-586.	0.4	2
119	The Effect of Bilayer Graphene Nanoribbon Geometry on Schottky-Barrier Diode Performance. Journal of Nanomaterials, 2013, 2013, 1-8.	2.7	2
120	Optimization of DNA Sensor Model Based Nanostructured Graphene Using Particle Swarm Optimization Technique. Journal of Nanomaterials, 2013, 2013, 1-9.	2.7	8
121	Capacitance Variation of Electrolyte-Gated Bilayer Graphene Based Transistors. Journal of Nanomaterials, 2013, 2013, 1-5.	2.7	2
122	The impact of germanium in strained Si/relaxed Si _{1â^'<i>x</i>} Ge _{<i>x</i>} on carrier performance in non-degenerate and degenerate regimes. Journal of Semiconductors, 2013, 34, 062001.	3.7	1
123	The effect of width on graphene nanoribbon density of state under uniaxial strain. , 2013, , .		1
124	ENERGY QUANTIZATION ON THE CURRENT-VOLTAGE CHARACTERISTIC OF NANOSCALE TWO-DIMENSIONAL MOSFET. International Journal of Modern Physics B, 2013, 27, 1350077.	2.0	1
125	The Effect of Effective Channel Length on a Silicon Nanowire Fin Field Effect Transistor. Journal of Computational and Theoretical Nanoscience, 2013, 10, 964-967.	0.4	0
126	Layer Effect on Graphene Nanoribbon Quantum Capacitance. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2328-2331.	0.4	2

#	Article	IF	CITATIONS
127	Carrier Motion Effect on Bilayer Graphene Nanoribbon Base Biosensor Model. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1338-1342.	0.4	5
128	Current–Voltage Characteristics of Bilayer Graphene Nanoribbon Field Effect Transistor. Journal of Computational and Theoretical Nanoscience, 2013, 10, 738-741.	0.4	2
129	Performance of Bilayer Graphene Nanoribbon Schottky Diode in Comparison with Conventional Diodes. Journal of Computational and Theoretical Nanoscience, 2013, 10, 323-327.	0.4	10
130	Gas Concentration Effect on Channel Capacitance in Graphene Based Sensors. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2449-2452.	0.4	10
131	The Potential Barrier of Graphene Nanoribbon Based Schottky Diode. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 281-284.	0.5	1
132	Perpendicular Electric Field Effect on Electronic Properties of Bilayer Graphene. Science of Advanced Materials, 2013, 5, 1954-1959.	0.7	2
133	Analytical Modeling of Monolayer Graphene-based NO ₂ Sensor. Sensor Letters, 2013, 11, 270-275.	0.4	16
134	Schottky Current in Carbon Nanotube-Metal Contact. Journal of Computational and Theoretical Nanoscience, 2012, 9, 1554-1557.	0.4	6
135	Effect of Graphene Nanoribbons Layers on Its Band Energy and the Electrical Properties. Journal of Computational and Theoretical Nanoscience, 2012, 9, 2082-2085.	0.4	1
136	The Effect of Applied Voltage on the Carrier Effective Mass in ABA Trilayer Graphene Nanoribbon. Journal of Computational and Theoretical Nanoscience, 2012, 9, 1618-1621.	0.4	10
137	Theory of Ionization Mechanism in Graphene Nanoribbons. Journal of Computational and Theoretical Nanoscience, 2012, 9, 2190-2192.	0.4	6
138	Trilayer graphene nanoribbon carrier statistics in degenerate and non degenerate limits., 2012,,.		3
139	DNA sensor model based on a carbon nanotube network in the degenerate limit. , 2012, , .		0
140	lonization coefficient of monolayer graphene nanoribbon. Microelectronics Reliability, 2012, 52, 1396-1400.	1.7	16
141	Scattering effects in Silicon Nanowire Fin field effect transistor. , 2012, , .		1
142	Temperature effect on quantum capacitance zig-zag graphene nanoscrolls (ZGNS) (16,0)., 2012,,.		0
143	Modeling of graphene nano-ribbon Schottky diodes in the parabolic band structure limit. , 2012, , .		3
144	Carrier concentration modeling of bilayer graphene. AIP Conference Proceedings, 2012, , .	0.4	1

#	Article	IF	Citations
145	CHANNEL CONDUCTANCE OF ABA STACKING TRILAYER GRAPHENE NANORIBBON FIELD-EFFECT TRANSISTOR. Modern Physics Letters B, 2012, 26, 1250047.	1.9	10
146	Modelling and simulation of saturation region in double gate graphene nanoribbon transistors. Semiconductors, 2012, 46, 126-129.	0.5	9
147	Band energy effect on carrier velocity limit in graphene nanoribbon. Journal of Experimental Nanoscience, 2012, 7, 62-73.	2.4	5
148	Monolayer Graphene Nanoribbon Homojunction Characteristics. Science of Advanced Materials, 2012, 4, 753-756.	0.7	9
149	Analytical Modeling of Graphene-Based DNA Sensor. Science of Advanced Materials, 2012, 4, 1142-1147.	0.7	22
150	Carrier Statistics Modeling of p-Type Graphene Nanoribbons. , 2012, , .		0
151	The Sub-Band Effect on the Graphene Nanoribbon Based Field-Effect Transistor. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 361-365.	0.5	O
152	EFFECTIVE MOBILITY MODEL OF GRAPHENE NANORIBBON IN PARABOLIC BAND ENERGY. Modern Physics Letters B, 2011, 25, 739-745.	1.9	8
153	A review on carbon-based materials as on-chip interconnects. Proceedings of SPIE, 2011, , .	0.8	2
154	Current-voltage modeling of Bilayer Graphene Nanoribbon Schottky Diode., 2011,,.		2
155	CARRIER STATISTICS MODEL FOR A BILAYER GRAPHENE NANORIBBON IN THE NONDEGENERATE REGIME. , 2011, , .		1
156	Bilayer Graphene Nanoribbon Carrier Statistic in Degenerate and Non Degenerate Limit. Journal of Computational and Theoretical Nanoscience, 2011, 8, 2029-2032.	0.4	7
157	CARBON NANOTUBE CAPACITANCE MODEL IN DEGENERATE AND NONDEGENERATE REGIMES. , 2011, , .		4
158	DRIFT VELOCITY AND MOBILITY OF A GRAPHENE NANORIBBON IN A HIGH MAGNITUDE ELECTRIC FIELD. , 2011, , .		4
159	BILAYER GRAPHENE NANORIBBON CARRIER STATISTICS IN THE DEGENERATE REGIME. , 2011, , .		4
160	A model for length of saturation velocity region in double-gate Graphene nanoribbon transistors. Microelectronics Reliability, 2011, 51, 2143-2146.	1.7	16
161	Single Wall Carbon Nanotube Field Effect Transistor Model. Journal of Computational and Theoretical Nanoscience, 2011, 8, 261-267.	0.4	1
162	Modeling of Quantum Capacitance in Graphene Nanoribbon. AIP Conference Proceedings, 2011, , .	0.4	6

#	Article	IF	Citations
163	Monolayer graphene nanoribbon p-n junction. , 2011, , .		2
164	Ballistic Conductance Model of Bilayer Graphene Nanoribbon (BGN). Journal of Computational and Theoretical Nanoscience, 2011, 8, 1993-1998.	0.4	12
165	LOW-FIELD MOBILITY MODEL ON PARABOLIC BAND ENERGY OF GRAPHENE NANORIBBON. Modern Physics Letters B, 2011, 25, 281-290.	1.9	4
166	Design and Analysis of a New Carbon Nanotube Full Adder Cell. Journal of Nanomaterials, 2011, 2011, 1-6.	2.7	13
167	Bilayer Graphene Nanoribbon Conductance Model in Parabolic Band Structure., 2011,,.		0
168	Low-Dimensional Carrier Statistics in Nanostructures. Current Nanoscience, 2011, 7, 235-239.	1.2	10
169	Analytical modeling of high performance single-walled carbon nanotube field-effect-transistor. Microelectronics Journal, 2010, 41, 579-584.	2.0	16
170	Graphene Nanoribbon Conductance Model in Parabolic Band Structure. Journal of Nanomaterials, 2010, 2010, 1-4.	2.7	50
171	Modelling of Graphene Nanoribbon Fermi Energy. Journal of Nanomaterials, 2010, 2010, 1-6.	2.7	20
172	Bilayer Graphene nanoribbon conductance model in parabolic band structure. , 2010, , .		0
173	Carbon nanotube conductance model in parabolic band structure. , 2010, , .		10
174	Nonparabolic band structure effect on carrier transport in semiconducting graphene nanoribbons. , 2010, , .		0
175	Graphene Nanoribbon Fermi Energy Model in Parabolic Band Structure. , 2010, , .		2
176	Modeling of quantum capacitance of Graphene Nanoribbons. , 2010, , .		7
177	Analytical Study of Carrier Statistic in 2-Dimensional Nanoscale P-MOS., 2009,,.		1
178	Analytical Study Of Drift Velocity In P-Type Silicon Nanowires. , 2009, , .		0
179	The high-field drift velocity in degenerately-doped silicon nanowires. International Journal of Nanotechnology, 2009, 6, 601.	0.2	22
180	Current–voltage characteristics of a silicon nanowire transistor. Microelectronics Journal, 2009, 40, 547-549.	2.0	23

#	Article	IF	CITATIONS
181	Analytical study of drift velocity in N-type silicon nanowires. , 2009, , .		1
182	The drain velocity overshoot in an 80 nm metal-oxide-semiconductor field-effect transistor. Journal of Applied Physics, 2009, 105, 074503.	2.5	31
183	Extraction of SPICE Model for Double Gate Vertical MOSFET. , 2009, , .		0
184	Physics-Based Simulation of Carrier Velocity in 2-Dimensional P-Type MOSFET., 2009,,.		1
185	Design and Analysis of Nanoscale Vertical MOSFET Using Oblique Rotating Implantation (ORI) Method with Reduced Parasitic Capacitance. , 2009, , .		O
186	FERMI ENERGY IN THE NON-PARABOLIC BAND STRUCTURE OF A CARBON NANOTUBE. , 2009, , .		O
187	Analysis and simulation of carriers statistic for semiconducting single wall carbon nanotube. Materials Research Innovations, 2009, 13, 211-213.	2.3	3
188	Vertical Double Gate MOSFET For Nanoscale Device With Fully Depleted Feature. , 2009, , .		8
189	Ballistic Saturation Velocity of Quasi-2D Low-Dimensional Nanoscale Field Effect Transistor (FET). , 2009, , .		3
190	Numerical Analysis of Vertical Double Gate MOSFETs (VDGM) With Dielectric Pocket (DP) Effects on Silicon Pillar for Nanoscale Transistor. , 2009, , .		0
191	Numerical Study of Fermi energy For P-Type Silicon Nanowire. , 2009, , .		0
192	Ballistic carrier transport in a quasi-two-dimensional nanoscale field effect transistor (FET)., 2008,,.		0
193	Modelling of the current-voltage characteristics of a carbon nano tube field effect transistor. , 2008, , .		4
194	The Ultimate Ballistic Drift Velocity in Carbon Nanotubes. Journal of Nanomaterials, 2008, 2008, 1-8.	2.7	32
195	Formulation and simulation for electrical properties of a (5,3) Single Wall Carbon Nanotube. , 2008, , .		4
196	The high-field drift velocity in degenerately-doped silicon nanowires. , 2008, , .		2
197	Carrier velocity in carbon nano tube field effect transistor. , 2008, , .		3
198	The Ultimate Drift Velocity in Two Dimensional Quantum Limit., 2008,,.		0