Tony J Prescott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9539993/publications.pdf

Version: 2024-02-01

196 papers 7,921 citations

76326 40 h-index 82 g-index

206 all docs

206 docs citations

206 times ranked 6072 citing authors

#	Article	IF	CITATIONS
1	The basal ganglia: a vertebrate solution to the selection problem?. Neuroscience, 1999, 89, 1009-1023.	2.3	1,083
2	The brainstem reticular formation is a small-world, not scale-free, network. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 503-511.	2.6	529
3	A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biological Cybernetics, 2001, 84, 401-410.	1.3	510
4	Is the short-latency dopamine response too short to signal reward error?. Trends in Neurosciences, 1999, 22, 146-151.	8.6	509
5	The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward Progress in Neurobiology, 2010, 90, 385-417.	5.7	326
6	A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biological Cybernetics, 2001, 84, 411-423.	1.3	245
7	Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1035-1041.	2.6	231
8	Layered Control Architectures in Robots and Vertebrates. Adaptive Behavior, 1999, 7, 99-127.	1.9	224
9	Active Touch Sensing in the Rat: Anticipatory and Regulatory Control of Whisker Movements During Surface Exploration. Journal of Neurophysiology, 2009, 101, 862-874.	1.8	188
10	The state of the art in biomimetics. Bioinspiration and Biomimetics, 2013, 8, 013001.	2.9	187
11	Active touch sensing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2989-2995.	4.0	186
12	A robot model of the basal ganglia: Behavior and intrinsic processing. Neural Networks, 2006, 19, 31-61.	5.9	167
13	Computational models of the basal ganglia: from robots to membranes. Trends in Neurosciences, 2004, 27, 453-459.	8.6	161
14	A Systematic Review of Attitudes, Anxiety, Acceptance, and Trust Towards Social Robots. International Journal of Social Robotics, 2020, 12, 1179-1201.	4.6	157
15	Whisking with robots. IEEE Robotics and Automation Magazine, 2009, 16, 42-50.	2.0	114
16	Active vibrissal sensing in rodents and marsupials. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3037-3048.	4.0	106
17	The evolution of active vibrissal sensing in mammals: evidence from vibrissal musculature and function in the marsupial opossum <i>Monodelphis domestica</i> . Journal of Experimental Biology, 2013, 216, 3483-94.	1.7	92
18	Biomimetic vibrissal sensing for robots. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3085-3096.	4.0	91

#	Article	IF	Citations
19	Strategy Change in Vibrissal Active Sensing during Rat Locomotion. Current Biology, 2014, 24, 1507-1512.	3.9	83
20	Whiskerbot: A Robotic Active Touch System Modeled on the Rat Whisker Sensory System. Adaptive Behavior, 2007, 15, 223-240.	1.9	77
21	The development of whisker control in rats in relation to locomotion. Developmental Psychobiology, 2012, 54, 151-168.	1.6	74
22	Response times for visually guided saccades in persons with Parkinson's disease: A meta-analytic review. Neuropsychologia, 2010, 48, 887-899.	1.6	68
23	Whisker touch sensing guides locomotion in small, quadrupedal mammals. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180592.	2.6	67
24	Continuity and change in the development of category structure: Insights from the semantic fluency task. International Journal of Behavioral Development, 2003, 27, 467-479.	2.4	66
25	Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2509-2516.	2.6	62
26	Tactile Discrimination Using Active Whisker Sensors. IEEE Sensors Journal, 2012, 12, 350-362.	4.7	62
27	Active sensorimotor control for tactile exploration. Robotics and Autonomous Systems, 2017, 87, 15-27.	5.1	56
28	Connectionist Simulation of Attitude Learning: Asymmetries in the Acquisition of Positive and Negative Evaluations. Personality and Social Psychology Bulletin, 2003, 29, 1221-1235.	3.0	54
29	Active contour following to explore object shape with robot touch. , 2013, , .		54
30	Whisker touch guides canopy exploration in a nocturnal, arboreal rodent, the Hazel dormouse (Muscardinus avellanarius). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 133-142.	1.6	54
31	Is there a brainstem substrate for action selection?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1627-1639.	4.0	52
32	The role of orienting in vibrissal touch sensing. Frontiers in Behavioral Neuroscience, 2012, 6, 39.	2.0	52
33	Tactile Superresolution and Biomimetic Hyperacuity. IEEE Transactions on Robotics, 2015, 31, 605-618.	10.3	50
34	The Human Brain Project: Responsible Brain Research for the Benefit of Society. Neuron, 2019, 101, 380-384.	8.1	50
35	Socially Assistive Robots as Mental Health Interventions for Children: A Scoping Review. International Journal of Social Robotics, 2021, 13, 919-935.	4.6	49
36	DAC-h3: A Proactive Robot Cognitive Architecture to Acquire and Express Knowledge About the World and the Self. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10, 1005-1022.	3.8	48

#	Article	IF	CITATIONS
37	A Robot Trace Maker: Modeling the Fossil Evidence of Early Invertebrate Behavior. Artificial Life, 1997, 3, 289-306.	1.3	47
38	Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat. PLoS Computational Biology, 2013, 9, e1003236.	3.2	47
39	Introduction. Modelling natural action selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1521-1529.	4.0	46
40	Spatial Representation for Navigation in Animats. Adaptive Behavior, 1996, 4, 85-123.	1.9	45
41	Contact type dependency of texture classification inÂaÂwhiskered mobile robot. Autonomous Robots, 2009, 26, 223-239.	4.8	45
42	The Combinatorial Creature: Cortical Phenotypes within and across Lifetimes. Trends in Neurosciences, 2018, 41, 744-762.	8.6	42
43	Forced Moves or Good Tricks in Design Space? Landmarks in the Evolution of Neural Mechanisms for Action Selection. Adaptive Behavior, 2007, 15, 9-31.	1.9	40
44	Naive Bayes texture classification applied to whisker data from a moving robot. , 2010, , .		39
45	Active touch for robust perception under position uncertainty. , 2013, , .		39
46	Optimal decision-making in mammals: insights from a robot study of rodent texture discrimination. Journal of the Royal Society Interface, 2012, 9, 1517-1528.	3.4	38
47	Are friends electric? The benefits and risks of human-robot relationships. IScience, 2021, 24, 101993.	4.1	37
48	Feeling the Shape: Active Exploration Behaviors for Object Recognition With a Robotic Hand. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 2339-2348.	9.3	35
49	A BASAL GANGLIA INSPIRED MODEL OF ACTION SELECTION EVALUATED IN A ROBOTIC SURVIVAL TASK. Journal of Integrative Neuroscience, 2003, 02, 179-200.	1.7	31
50	Tactile SLAM with a biomimetic whiskered robot. , 2012, , .		31
51	Adaptive Cancelation of Self-Generated Sensory Signals in a Whisking Robot. IEEE Transactions on Robotics, 2010, 26, 1065-1076.	10.3	29
52	Modeling the Emergence of Whisker Direction Maps in Rat Barrel Cortex. PLoS ONE, 2010, 5, e8778.	2.5	28
53	An Internal Model Architecture for Novelty Detection: Implications for Cerebellar and Collicular Roles in Sensory Processing. PLoS ONE, 2012, 7, e44560.	2.5	28
54	The Synthetic Psychology of the Self. Intelligent Systems, Control and Automation: Science and Engineering, 2019, , 85-104.	0.5	26

#	Article	IF	CITATIONS
55	Vibrissal touch sensing in the harbor seal (Phoca vitulina): how do seals judge size?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 521-533.	1.6	25
56	Multisensory Wearable Interface for Immersion and Telepresence in Robotics. IEEE Sensors Journal, 2017, 17, 2534-2541.	4.7	25
57	Robots are not just tools. Connection Science, 2017, 29, 142-149.	3.0	25
58	Robot Companions for Citizens. Procedia Computer Science, 2011, 7, 47-51.	2.0	24
59	Active Bayesian perception for angle and position discrimination with a biomimetic fingertip. , 2013, , .		24
60	Abnormalities in whisking behaviour are associated with lesions in brain stem nuclei in a mouse model of amyotrophic lateral sclerosis. Behavioural Brain Research, 2014, 259, 274-283.	2.2	24
61	The effects of robot facial emotional expressions and gender on child–robot interaction in a field study. Connection Science, 2018, 30, 343-361.	3.0	24
62	Memory and mental time travel in humans and social robots. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180025.	4.0	24
63	Testing computational hypotheses of brain systems function: a case study with the basal ganglia. Network: Computation in Neural Systems, 2004, 15, 263-290.	3.6	24
64	A new dissimilarity measure for finding semantic structure in category fluency data with implications for understanding memory organization in schizophrenia Neuropsychology, 2006, 20, 685-699.	1.3	23
65	Towards hierarchical blackboard mapping on a whiskered robot. Robotics and Autonomous Systems, 2012, 60, 1356-1366.	5.1	23
66	Saying It with Light: A Pilot Study of Affective Communication Using the MIRO Robot. Lecture Notes in Computer Science, 2015, , 243-255.	1.3	23
67	BRAHMS: Novel middleware for integrated systems computation. Advanced Engineering Informatics, 2010, 24, 49-61.	8.0	21
68	Brain-inspired Bayesian perception for biomimetic robot touch., 2012,,.		21
69	Spike-timing in primary sensory neurons: a model of somatosensory transduction in the rat. Biological Cybernetics, 2008, 98, 185-194.	1.3	20
70	SCRATCHbot: Active Tactile Sensing in a Whiskered Mobile Robot. Lecture Notes in Computer Science, 2010, , 93-103.	1.3	20
71	Simultaneous localisation and mapping on a multi-degree of freedom biomimetic whiskered robot. , $2013,$, .		19
72	Whisker-object contact speed affects radial distance estimation., 2010,,.		18

#	Article	IF	CITATIONS
73	An integrated probabilistic framework for robot perception, learning and memory. , 2016, , .		18
74	Embodied hyperacuity from Bayesian perception: Shape and position discrimination with an iCub fingertip sensor. , $2012, , .$		17
75	Active touch sensing: finger tips, whiskers, and antennae. Frontiers in Behavioral Neuroscience, 2014, 8, 50.	2.0	17
76	Is There an Integrative Center in the Vertebrate Brain-Stem? A Robotic Evaluation of a Model of the Reticular Formation Viewed as an Action Selection Device. Adaptive Behavior, 2005, 13, 97-113.	1.9	16
77	MIRO., 2015,,.		16
78	The EASEL Project: Towards Educational Human-Robot Symbiotic Interaction. Lecture Notes in Computer Science, 2016, , 297-306.	1.3	16
79	MIRO: A Robot "Mammal―with a Biomimetic Brain-Based Control System. Lecture Notes in Computer Science, 2016, , 179-191.	1.3	16
80	Biomimetic robots as scientific models: a view from the whisker tip., 2011,, 23-57.		15
81	Head-Mounted Sensory Augmentation Device: Designing a Tactile Language. IEEE Transactions on Haptics, 2016, 9, 376-386.	2.7	15
82	Centralizing Bias and the Vibrotactile Funneling Illusion on the Forehead. Lecture Notes in Computer Science, 2014, , 55-62.	1.3	15
83	Hippocampus as unitary coherent particle filter. , 2010, , .		14
84	Dual-Mode Model Predictive Control of an Omnidirectional Wheeled Inverted Pendulum. IEEE/ASME Transactions on Mechatronics, 2019, 24, 2964-2975.	5.8	14
85	The effect of whisker movement on radial distance estimation: a case study in comparative robotics. Frontiers in Neurorobotics, 2013, 6, 12.	2.8	13
86	iCub-HRI: A Software Framework for Complex Human–Robot Interaction Scenarios on the iCub Humanoid Robot. Frontiers in Robotics and AI, 2018, 5, 22.	3.2	13
87	Head-Mounted Sensory Augmentation Device: Comparing Haptic and Audio Modality. Lecture Notes in Computer Science, 2016, , 107-118.	1.3	13
88	A Biomimetic Haptic Sensor. International Journal of Advanced Robotic Systems, 2005, 2, 36.	2.1	12
89	Naive Bayes novelty detection for a moving robot with whiskers. , 2010, , .		12
90	Biomimetic tactile target acquisition, tracking and capture. Robotics and Autonomous Systems, 2014, 62, 366-375.	5.1	12

#	Article	IF	Citations
91	Towards a Synthetic Tutor Assistant: The EASEL Project and its Architecture. Lecture Notes in Computer Science, 2016, , 353-364.	1.3	11
92	Bayesian perception of touch for control of robot emotion. , 2016, , .		11
93	Addressing the Ethics of Telepresence Applications Through End-User Engagement. Journal of Alzheimer's Disease, 2020, 76, 457-460.	2.6	11
94	The Basal Ganglia viewed as an Action Selection Device. Perspectives in Neural Computing, 1998, , 1033-1038.	0.1	11
95	Children's Age Influences Their Perceptions of a Humanoid Robot as Being Like a Person or Machine. Lecture Notes in Computer Science, 2015, , 348-353.	1.3	11
96	Active haptic shape recognition by intrinsic motivation with a robot hand., 2015,,.		10
97	Me in the machine. New Scientist, 2015, 225, 36-39.	0.0	10
98	Expressive touch: Control of robot emotional expression by touch., 2016,,.		10
99	Ethical principles of robotics. Connection Science, 2017, 29, 119-123.	3.0	9
100	MiRo., 2017,,.		9
101	Analyzing children's expectations from robotic companions in educational settings. , 2017, , .		9
102	A Model of Sensorimotor Coordination in the Rat Whisker System. Lecture Notes in Computer Science, 2006, , 77-88.	1.3	9
103	The Robot Basal Ganglia:. Advances in Behavioral Biology, 2002, , 349-358.	0.2	9
104	Tactile Discrimination Using Template Classifiers: Towards a Model of Feature Extraction in Mammalian Vibrissal Systems. Lecture Notes in Computer Science, 2010, , 178-187.	1.3	9
105	Kinematic Coordination of Reach and Balance. Journal of Motor Behavior, 1998, 30, 217-233.	0.9	8
106	Technical integration of hippocampus, basal ganglia and physical models for spatial navigation. Frontiers in Neuroinformatics, 2009, 3, 6.	2.5	8
107	The effect of direct and extended contact on attitudes towards social robots. Heliyon, 2021, 7, e06418.	3.2	8
108	Machines Learning - Towards a New Synthetic Autobiographical Memory. Lecture Notes in Computer Science, 2014, , 84-96.	1.3	8

#	Article	IF	Citations
109	Learning in a Unitary Coherent Hippocampus. Lecture Notes in Computer Science, 2010, , 388-394.	1.3	8
110	Learning from sensory predictions for autonomous and adaptive exploration of object shape with a tactile robot. Neurocomputing, 2020, 382, 127-139.	5.9	7
111	Telepresence: Immersion with the iCub Humanoid Robot and the Oculus Rift. Lecture Notes in Computer Science, 2015, , 461-464.	1.3	7
112	Congratulations, It's a Boy! Bench-Marking Children's Perceptions of the Robokind Zeno-R25. Lecture Notes in Computer Science, 2016, , 33-39.	1.3	7
113	CrunchBot: A Mobile Whiskered Robot Platform. Lecture Notes in Computer Science, 2011, , 102-113.	1.3	7
114	A General Classifier of Whisker Data Using Stationary Naive Bayes: Application to BIOTACT Robots. Lecture Notes in Computer Science, 2011 , , $13-23$.	1.3	7
115	Scaffolding layered control architectures through constraint closure: insights into brain evolution and development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200519.	4.0	7
116	Neural Computation via Neural Geometry: A Place Code for Inter-whisker Timing in the Barrel Cortex?. PLoS Computational Biology, 2011, 7, e1002188.	3.2	6
117	Cortical mechanisms of action selection: the affordance competition hypothesis., 0,, 208-238.		5
118	Mechanisms of choice in the primate brain: a quick look at positive feedback., 0,, 390-418.		5
119	The Robot Vibrissal System: Understanding Mammalian Sensorimotor Co-ordination Through Biomimetics. , 2015, , 213-240.		5
120	The Emergence of Action Sequences from Spatial Attention: Insight from Rodent-Like Robots. Lecture Notes in Computer Science, 2012, , 168-179.	1.3	5
121	Implications of Action-Oriented Paradigm Shifts in Cognitive Science. , 2016, , 333-356.		5
122	Optimising Robot Personalities for Symbiotic Interaction. Lecture Notes in Computer Science, 2014, , 392-395.	1.3	5
123	User perspectives on emotionally aligned social robots for older adults and persons living with dementia. Journal of Rehabilitation and Assistive Technologies Engineering, 2022, 9, 205566832211083.	0.9	5
124	Action selection and refinement in subcortical loops through basal ganglia and cerebellum. , 0, , 176-207.		4
125	Whiskered texture classification with uncertain contact pose geometry. , 2012, , .		4
126	A future of living machines?: International trends and prospects in biomimetic and biohybrid systems. Proceedings of SPIE, 2014, , .	0.8	4

#	Article	IF	CITATIONS
127	Extending a Hippocampal Model for Navigation Around a Maze Generated from Real-World Data. Lecture Notes in Computer Science, 2015, , 441-452.	1.3	4
128	Towards a Wearable Interface for Immersive Telepresence in Robotics. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2017, , 65-73.	0.3	4
129	Mapping with Sparse Local Sensors and Strong Hierarchical Priors. Lecture Notes in Computer Science, 2011, , 183-194.	1.3	4
130	A SOLID Case for Active Bayesian Perception in Robot Touch. Lecture Notes in Computer Science, 2013, , 154-166.	1.3	4
131	Perception of Simple Stimuli Using Sparse Data from a Tactile Whisker Array. Lecture Notes in Computer Science, 2013, , 179-190.	1.3	4
132	The AI Singularity and Runaway Human Intelligence. Lecture Notes in Computer Science, 2013, , 438-440.	1.3	4
133	A Biologically Inspired FPGA Based Implementation of a Tactile Sensory System for Object Recognition and Texture Discrimination., 2006,,.		3
134	Texture Classification through Tactile Sensing. Lecture Notes in Computer Science, 2012, , 377-379.	1.3	3
135	Active Bayesian perception and reinforcement learning. , 2013, , .		3
136	Active Control for Object Perception and Exploration with a Robotic Hand. Lecture Notes in Computer Science, 2015, , 415-428.	1.3	3
137	Action recognition with unsynchronised multi-sensory data. , 2017, , .		3
138	Design and control of a novel omnidirectional dynamically balancing platform for remote inspection of confined and cluttered environments. , 2018 , , .		3
139	Collinear Mecanum Drive: Modeling, Analysis, Partial Feedback Linearization, and Nonlinear Control. IEEE Transactions on Robotics, 2021, 37, 642-658.	10.3	3
140	iCub Visual Memory Inspector: Visualising the iCub's Thoughts. Lecture Notes in Computer Science, 2016, , 48-57.	1.3	3
141	A Framework for Resolving Motivational Conflict via Attractor Dynamics. Lecture Notes in Computer Science, 2020, , 192-203.	1.3	3
142	Adaptive perception: Learning from sensory predictions to extract object shape with a biomimetic fingertip., 2017,,.		2
143	MiRo., 2018, , .		2
144	Velocity Constrained Trajectory Generation for a Collinear Mecanum Wheeled Robot., 2019,,.		2

#	Article	IF	CITATIONS
145	Robotic automation can improve the lives of people who need social care. BMJ: British Medical Journal, 2019, 364, l62.	2.3	2
146	Distributed Action Selection by a Brainstem Neural Substrate: An Embodied Evaluation. Lecture Notes in Computer Science, 2006, , 199-210.	1.3	2
147	The Interaction of Recurrent Axon Collateral Networks in the Basal Ganglia. Lecture Notes in Computer Science, 2003, , 797-804.	1.3	2
148	The State-of-the-Art in Biomimetics. Lecture Notes in Computer Science, 2012, , 367-368.	1.3	2
149	Discrimination of Social Tactile Gestures Using Biomimetic Skin. Lecture Notes in Computer Science, 2014, , 46-48.	1.3	2
150	A Living Machines approach to the sciences of mind and brain. , 2018, , .		2
151	Angle and Position Perception for Exploration with Active Touch. Lecture Notes in Computer Science, 2013, , 405-408.	1.3	2
152	Designing Robot Personalities for Human-Robot Symbiotic Interaction in an Educational Context. Lecture Notes in Computer Science, 2016, , 413-417.	1.3	2
153	Improving the Visual Comfort of Virtual Reality Telepresence for Robotics. Lecture Notes in Computer Science, 2019, , 697-706.	1.3	2
154	Toward an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system., 0,, 239-263.		1
155	Optimised agent-based modelling of action selection. , 2011, , 37-60.		1
156	Cerebellum-based adaptation for fine haptic control over the space of uncertain surfaces. , 2013, , .		1
157	Robots that Imagine – Can Hippocampal Replay Be Utilized for Robotic Mnemonics?. Lecture Notes in Computer Science, 2019, , 277-286.	1.3	1
158	Measuring the Effectiveness of Biomimetic Robots as Therapeutic Tools: Translating the Felt Security Scale from English to Japanese. Lecture Notes in Computer Science, 2019, , 63-75.	1.3	1
159	Sensing with Artificial Tactile Sensors: An Investigation of Spatio-temporal Inference. Lecture Notes in Computer Science, 2011, , 253-264.	1.3	1
160	Predictive Prey Pursuit in a Whiskered Robot. Lecture Notes in Computer Science, 2012, , 343-353.	1.3	1
161	Towards a Roadmap for Living Machines. Lecture Notes in Computer Science, 2013, , 396-398.	1.3	1
162	Living Machines., 2018,,.		1

#	Article	IF	CITATIONS
163	Action-Oriented Cognition and Its Implications. , 2016, , 321-332.		1
164	Hippocampus, Amygdala and Basal Ganglia Based Navigation Control. Lecture Notes in Computer Science, 2009, , 267-276.	1.3	1
165	Bioinspired Control of Electro-Active Polymers for Next Generation Soft Robots. Lecture Notes in Computer Science, 2012, , 424-425.	1.3	1
166	Individual Differences and Biohybrid Societies. Lecture Notes in Computer Science, 2014, , 374-376.	1.3	1
167	Children's Age Influences Their Use of Biological and Mechanical Questions Towards a Humanoid. Lecture Notes in Computer Science, 2017, , 290-299.	1.3	1
168	Evo-devo., 2018,,.		1
169	Active Touch Sensing in Mammals and Robots. , 2020, , 79-109.		1
170	Fast Reverse Replays of Recent Spatiotemporal Trajectories in a Robotic Hippocampal Model. Lecture Notes in Computer Science, 2020, , 390-401.	1.3	1
171	IntelliTable: Inclusively-Designed Furniture with Robotic Capabilities. Studies in Health Technology and Informatics, 2017, 242, 565-572.	0.3	1
172	The medial reticular formation: a brainstem substrate for simple action selection?., 0,, 300-329.		0
173	Who dominates who in the dark basements of the brain?. Behavioral and Brain Sciences, 2007, 30, 104-105.	0.7	O
174	"A new dissimilarity measure for finding semantic structure in categroy fluency data with implications for understanding memory organization in schizophrenia": Correction to Prescott, Newton, Mir, Woodruff, and Parks (2006) Neuropsychology, 2007, 21, 273-273.	1.3	0
175	Learning cortical representations from multiple whisker inputs. BMC Neuroscience, 2009, 10, .	1.9	O
176	Introduction to Part II: computational neuroscience models., 0,, 169-175.		0
177	Introduction to Part I: rational and optimal decision making. , 0, , 7-11.		O
178	Biologically constrained action selection improves cognitive control in a model of the Stroop task., $0, 363-389$.		0
179	Introduction to Part III: action selection in social contexts., 0,, 421-426.		0
180	State-dependent foraging rules for social animals in selfish herds. , 2011, , 523-537.		0

#	Article	IF	CITATIONS
181	TAROS2011. Robotics and Autonomous Systems, 2012, 60, 1355.	5.1	o
182	Living Machines 2012: The First International Conference on Biomimetic and Biohybrid Systems. Bioinspiration and Biomimetics, 2013, 8, 030201.	2.9	0
183	Editorial: Ethical Principles of Robotics. Connection Science, 2017, 29, 187-188.	3.0	О
184	F1â€05â€04: A PERSONALIZED, ANIMALâ€LIKE ROBOT COMPANION TO SUPPORT PEOPLE WITH DEMENTIA. Alzheimer's and Dementia, 2018, 14, P210.	0.8	0
185	A Window into the Robot â€~mind': Using a Graphical Real-Time Display to Provide Transparency of Function in a Brain-Based Robot. Lecture Notes in Computer Science, 2019, , 316-320.	1.3	O
186	Obstacle Avoidance Using Stereo Vision and Deep Reinforcement Learning in an Animal-like Robot. , 2019, , .		0
187	Towards a Framework for Tactile Perception in Social Robotics. Lecture Notes in Computer Science, 2012, , 335-336.	1.3	0
188	Toward a Fusion Model of Feature and Spatial Tactile Memory in the Crayfish Cherax Destructor. Lecture Notes in Computer Science, 2012, , 352-354.	1.3	0
189	Evo-devo Design for Living Machines. Lecture Notes in Computer Science, 2013, , 454-456.	1.3	0
190	Feature Distributions and Experimental Evaluation in a Connectionist Model of Semantic Memory. Perspectives in Neural Computing, 1999, , 159-169.	0.1	0
191	Vibrissal Behavior and Function. , 2016, , 103-116.		0
192	A Bioinspired Approach to Vision. Lecture Notes in Computer Science, 2016, , 40-52.	1.3	0
193	A sketch of the education landscape in biomimetic and biohybrid systems. , 2018, , .		0
194	A roadmap for Living Machines research. , 2018, , .		0
195	Biomimetic systems. , 2018, , .		0
196	Mammals and mammal-like robots. , 2018, , .		0