Enrique Cadenas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/95388/publications.pdf Version: 2024-02-01

111 papers	14,149 citations	²⁴⁹⁷⁸ 57 h-index	²⁷³⁴⁵ 106 g-index
111 all docs	111 docs citations	111 times ranked	16028 citing authors

#	Article	IF	CITATIONS
1	Redox Pioneer: Professor Valerian Kagan. Antioxidants and Redox Signaling, 2022, , .	2.5	1
2	Publisher Notice. Archives of Biochemistry and Biophysics, 2022, 721, 109197.	1.4	0
3	Commentary on "Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria― Archives of Biochemistry and Biophysics, 2022, , 109214.	1.4	0
4	Mitochondria as Target for Tumor Management of Hemangioendothelioma. Antioxidants and Redox Signaling, 2021, 34, 137-153.	2.5	6
5	Dihydromyricetin improves mitochondrial outcomes in the liver of alcohol-fed mice via the AMPK/Sirt-1/PGC-1α signaling axis. Alcohol, 2021, 91, 1-9.	0.8	32
6	Tobacco Smoke Exposure Impairs Brain Insulin/IGF Signaling: Potential Co-Factor Role in Neurodegeneration. Advances in Alzheimer's Disease, 2021, , .	0.2	17
7	Methionine restriction alleviates age-associated cognitive decline via fibroblast growth factor 21. Redox Biology, 2021, 41, 101940.	3.9	30
8	High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell Metabolism, 2021, 33, 923-938.e6.	7.2	110
9	Inhibition of Estrogen-Related Receptor α Blocks Liver Steatosis and Steatohepatitis and Attenuates Triglyceride Biosynthesis. American Journal of Pathology, 2021, 191, 1240-1254.	1.9	12
10	Treadmill exercise rescues mitochondrial function and motor behavior in the CAG140 knock-in mouse model of Huntington's disease. Chemico-Biological Interactions, 2020, 315, 108907.	1.7	21
11	Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nature Communications, 2020, 11, 855.	5.8	256
12	Brain metabolic and functional alterations in a liver-specific PTEN knockout mouse model. PLoS ONE, 2018, 13, e0204043.	1.1	3
13	Lethal dysregulation of energy metabolism during embryonic vitamin E deficiency. Free Radical Biology and Medicine, 2017, 104, 324-332.	1.3	36
14	Lipid quantitation and metabolomics data from vitamin E-deficient and -sufficient zebrafish embryos from 0 to 120 hours-post-fertilization. Data in Brief, 2017, 11, 432-441.	0.5	14
15	Effects of Lipoic Acid on High-Fat Diet-Induced Alteration of Synaptic Plasticity and Brain Glucose Metabolism: A PET/CT and 13C-NMR Study. Scientific Reports, 2017, 7, 5391.	1.6	32
16	Mitochondrial remodeling in the liver following chronic alcohol feeding to rats. Free Radical Biology and Medicine, 2017, 102, 100-110.	1.3	35
17	Editorial: The Metabolic-Inflammatory Axis in Brain Aging and Neurodegeneration. Frontiers in Aging Neuroscience, 2017, 9, 209.	1.7	19
18	Tobacco Smoke Exposure Impairs Brain Insulin/IGF Signaling: Potential Co-Factor Role in Neurodegeneration. Journal of Alzheimer's Disease, 2016, 50, 373-386.	1.2	25

#	Article	IF	CITATIONS
19	Spatial Variations in Vitreous Oxygen Consumption. PLoS ONE, 2016, 11, e0149961.	1.1	10
20	Mitochondrial function in ageing: coordination with signalling and transcriptional pathways. Journal of Physiology, 2016, 594, 2025-2042.	1.3	67
21	Cigarette Smoke-Induced Alterations in Frontal White Matter Lipid Profiles Demonstrated by MALDI-Imaging Mass Spectrometry: Relevance to Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 51, 151-163.	1.2	18
22	Antioxidants, oxidants, and redox impacts on cell function — A tribute to Helmut Sies —. Archives of Biochemistry and Biophysics, 2016, 595, 94-99.	1.4	24
23	Energy metabolism and inflammation in brain aging and Alzheimer's disease. Free Radical Biology and Medicine, 2016, 100, 108-122.	1.3	344
24	Introduction to Special Issue on Mitochondrial Redox Signaling in Health and Disease. Free Radical Biology and Medicine, 2016, 100, 1-4.	1.3	9
25	Tobacco Smoke-Induced Brain White Matter Myelin Dysfunction: Potential Co-Factor Role of Smoking in Neurodegeneration. Journal of Alzheimer's Disease, 2015, 50, 133-148.	1.2	34
26	High-Fat Diet Induces Hepatic Insulin Resistance and Impairment of Synaptic Plasticity. PLoS ONE, 2015, 10, e0128274.	1.1	161
27	Perimenopause as a neurological transition state. Nature Reviews Endocrinology, 2015, 11, 393-405.	4.3	286
28	Mitochondria: The Cellular Hub of the Dynamic Coordinated Network. Antioxidants and Redox Signaling, 2015, 22, 961-964.	2.5	51
29	The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity. Neurobiology of Aging, 2015, 36, 2282-2295.	1.5	80
30	Polyphenols from green tea prevent antineuritogenic action of Nogoâ€A via 67â€ <scp>kD</scp> a laminin receptor and hydrogen peroxide. Journal of Neurochemistry, 2015, 132, 70-84.	2.1	28
31	Energy-Redox Axis in Mitochondria: Interconnection of Energy-Transducing Capacity and Redox Status. Oxidative Stress and Disease, 2015, , 29-44.	0.3	1
32	Astrocytic metabolic and inflammatory changes as a function of age. Aging Cell, 2014, 13, 1059-1067.	3.0	124
33	Mitochondrial Energy Metabolism and Redox Signaling in Brain Aging and Neurodegeneration. Antioxidants and Redox Signaling, 2014, 20, 353-371.	2.5	212
34	Reversal of Metabolic Deficits by Lipoic Acid in a Triple Transgenic Mouse Model of Alzheimer's Disease: A ¹³ C NMR Study. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 288-296.	2.4	53
35	Hypermetabolic State in the 7-Month-Old Triple Transgenic Mouse Model of Alzheimer'S Disease and the Effect of Lipoic Acid: A ¹³ C-NMR Study. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1749-1760.	2.4	40
36	Short-Term Cigarette Smoke Exposure Leads to Metabolic Alterations in Lung Alveolar Cells. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 284-293.	1.4	86

#	Article	IF	CITATIONS
37	Green tea catechins potentiate the neuritogenic action of brain-derived neurotrophic factor: Role of 67-kDa laminin receptor and hydrogen peroxide. Biochemical and Biophysical Research Communications, 2014, 445, 218-224.	1.0	60
38	Neurovascular coupling in hippocampus is mediated via diffusion by neuronal-derived nitric oxide. Free Radical Biology and Medicine, 2014, 73, 421-429.	1.3	80
39	Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN) Signaling Regulates Mitochondrial Biogenesis and Respiration via Estrogen-related Receptor α (ERRI±). Journal of Biological Chemistry, 2013, 288, 25007-25024.	1.6	51
40	PI3K/AKT signaling regulates bioenergetics in immortalized hepatocytes. Free Radical Biology and Medicine, 2013, 60, 29-40.	1.3	60
41	Metabolic triad in brain aging: mitochondria, insulin/IGF-1 signalling and JNK signalling. Biochemical Society Transactions, 2013, 41, 101-105.	1.6	59
42	Metabolic shift in lung alveolar cell mitochondria following acrolein exposure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L764-L773.	1.3	30
43	Lipoic acid restores ageâ€associated impairment of brain energy metabolism through the modulation of <scp>A</scp> kt/ <scp>JNK</scp> signaling and <scp>PGC</scp> 1α transcriptional pathway. Aging Cell, 2013, 12, 1021-1031.	3.0	55
44	Age-Dependent Modulation of Synaptic Plasticity and Insulin Mimetic Effect of Lipoic Acid on a Mouse Model of Alzheimer's Disease. PLoS ONE, 2013, 8, e69830.	1.1	80
45	Short-term cigarette smoke exposure induces reversible changes in energy metabolism and cellular redox status independent of inflammatory responses in mouse lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L889-L898.	1.3	67
46	Dynamic Adaptation of Liver Mitochondria to Chronic Alcohol Feeding in Mice. Journal of Biological Chemistry, 2012, 287, 42165-42179.	1.6	69
47	Mitochondrial Thiols in the Regulation of Cell Death Pathways. Antioxidants and Redox Signaling, 2012, 17, 1714-1727.	2.5	102
48	Silencing of nicotinamide nucleotide transhydrogenase impairs cellular redox homeostasis and energy metabolism in PC12 cells. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 401-409.	0.5	73
49	Models of Mitochondrial Oxidative Stress. , 2011, , 545-562.		Ο
50	2-Deoxy-D-Glucose Treatment Induces Ketogenesis, Sustains Mitochondrial Function, and Reduces Pathology in Female Mouse Model of Alzheimer's Disease. PLoS ONE, 2011, 6, e21788.	1.1	149
51	Regulation of Mitochondrial Glutathione Redox Status and Protein Glutathionylation by Respiratory Substrates. Journal of Biological Chemistry, 2010, 285, 39646-39654.	1.6	160
52	Role of nitric oxide-mediated glutathionylation in neuronal function: potential regulation of energy utilization. Biochemical Journal, 2010, 428, 85-93.	1.7	32
53	Determination of GSH, GSSG, and GSNO Using HPLC with Electrochemical Detection. Methods in Enzymology, 2010, 473, 137-147.	0.4	48
54	Lipoic acid: energy metabolism and redox regulation of transcription and cell signaling. Journal of Clinical Biochemistry and Nutrition, 2010, 48, 26-32.	0.6	142

#	Article	IF	CITATIONS
55	Activation of câ€Junâ€Nâ€terminal kinase and decline of mitochondrial pyruvate dehydrogenase activity during brain aging. FEBS Letters, 2009, 583, 1132-1140.	1.3	83
56	The energy–redox axis in aging and age-related neurodegenerationâ~†. Advanced Drug Delivery Reviews, 2009, 61, 1283-1298.	6.6	48
57	Elevated neuronal nitric oxide synthase expression during ageing and mitochondrial energy production. Free Radical Research, 2009, 43, 431-439.	1.5	46
58	câ€ <i>Jun</i> Nâ€ŧerminal kinase regulates mitochondrial bioenergetics by modulating pyruvate dehydrogenase activity in primary cortical neurons. Journal of Neurochemistry, 2008, 104, 325-335.	2.1	110
59	Mitochondrial medicine and mitochondrion-based therapeutics. Advanced Drug Delivery Reviews, 2008, 60, 1437-1438.	6.6	7
60	Progesterone and Estrogen Regulate Oxidative Metabolism in Brain Mitochondria. Endocrinology, 2008, 149, 3167-3175.	1.4	233
61	Compromised proteasome degradation elevates neuronal nitric oxide synthase levels and induces apoptotic cell death. Archives of Biochemistry and Biophysics, 2008, 478, 181-186.	1.4	10
62	Hippocampal mitochondrial dysfunction in rat aging. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R501-R509.	0.9	86
63	On the Biologic Role of the Reaction of NO with Oxidized Cytochrome <i>c</i> Oxidase. Antioxidants and Redox Signaling, 2007, 9, 1569-1580.	2.5	56
64	Oxidants and antioxidants revisited. New concepts of oxidative stress. Free Radical Research, 2007, 41, 951-952.	1.5	66
65	Modified LDL activates JNKâ \in 2 phosphorylation and colocalization with mitochondria. FASEB Journal, 2007, 21, A853.	0.2	О
66	LDL nitration induced protein unfolding. FASEB Journal, 2007, 21, A853.	0.2	0
67	Redox activation of mitochondrial intermembrane space Cu,Zn-superoxide dismutase. Biochemical Journal, 2005, 387, 203-209.	1.7	56
68	Sites and Mechanisms of Aconitase Inactivation by Peroxynitrite:  Modulation by Citrate and Glutathione. Biochemistry, 2005, 44, 11986-11996.	1.2	146
69	Mitochondrial nitric oxide synthase. Trends in Pharmacological Sciences, 2005, 26, 190-195.	4.0	356
70	On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16774-16779.	3.3	169
71	Mitochondrial free radical production and cell signaling. Molecular Aspects of Medicine, 2004, 25, 17-26.	2.7	388
72	Voltage-dependent Anion Channels Control the Release of the Superoxide Anion from Mitochondria to Cytosol. Journal of Biological Chemistry, 2003, 278, 5557-5563.	1.6	611

#	Article	IF	CITATIONS
73	c-Jun N-terminal kinase (JNK)-mediated modulation of brain mitochondria function: new target proteins for JNK signalling in mitochondrion-dependent apoptosis. Biochemical Journal, 2003, 372, 359-369.	1.7	157
74	Nitric Oxide and Cell Signaling Pathways in Mitochondrial-Dependent Apoptosis. Biological Chemistry, 2002, 383, 411-23.	1.2	147
75	Mitochondrial superoxide anion production and release into intermembrane space. Methods in Enzymology, 2002, 349, 271-280.	0.4	26
76	Mitochondrial damage by nitric oxide is potentiated by dopamine in PC12 cells. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1556, 233-238.	0.5	34
77	The Modulation of Mitochondrial Nitric-oxide Synthase Activity in Rat Brain Development. Journal of Biological Chemistry, 2002, 277, 42447-42455.	1.6	93
78	Pathways of dopamine oxidation mediated by nitric oxide. Free Radical Biology and Medicine, 2002, 33, 685-690.	1.3	15
79	Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions. Free Radical Biology and Medicine, 2002, 33, 1260-1267.	1.3	136
80	Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochemical Journal, 2001, 353, 411.	1.7	330
81	Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochemical Journal, 2001, 359, 139.	1.7	181
82	Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochemical Journal, 2001, 353, 411-416.	1.7	464
83	Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochemical Journal, 2001, 359, 139-145.	1.7	229
84	Cellular titration of apoptosis with steady state concentrations of H2O2: submicromolar levels of H2O2 induce apoptosis through fenton chemistry independent of the cellular thiol state. Free Radical Biology and Medicine, 2001, 30, 1008-1018.	1.3	217
85	Oxidation of ubiquinol by peroxynitrite: implications for protection of mitochondria against nitrosative damage. Biochemical Journal, 2000, 349, 35.	1.7	49
86	Oxidation of ubiquinol by peroxynitrite: implications for protection of mitochondria against nitrosative damage. Biochemical Journal, 2000, 349, 35-42.	1.7	74
87	Mitochondrial free radical generation, oxidative stress, and aging11This article is dedicated to the memory of our dear friend, colleague, and mentor Lars Ernster (1920–1998), in gratitude for all he gave to us Free Radical Biology and Medicine, 2000, 29, 222-230.	1.3	2,556
88	Mitochondrial oxidative stress: A selfâ€propagating process with implications for signaling cascades. BioFactors, 2000, 11, 43-45.	2.6	17
89	Mitochondrial Production of Hydrogen Peroxide Regulation by Nitric Oxide and the Role of Ubisemiquinone. IUBMB Life, 2000, 50, 245-250.	1.5	123
90	Estimation of H2 O2 gradients across biomembranes. FEBS Letters, 2000, 475, 121-126.	1.3	438

#	Article	IF	CITATIONS
91	Analysis of the pathways of nitric oxide utilization in mitochondria. Free Radical Research, 2000, 33, 747-756.	1.5	60
92	Mitochondrial Production of Hydrogen Peroxide Regulation by Nitric Oxide and the Role of Ubisemiquinone. IUBMB Life, 2000, 50, 245-250.	1.5	70
93	Regulation of Mitochondrial Respiration by Oxygen and Nitric Oxide. Annals of the New York Academy of Sciences, 2000, 899, 121-135.	1.8	132
94	Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against Oxidation. IUBMB Life, 1999, 48, 57-65.	1.5	59
95	The Regulation of Mitochondrial Oxygen Uptake by Redox Reactions Involving Nitric Oxide and Ubiquinol. Journal of Biological Chemistry, 1999, 274, 37709-37716.	1.6	158
96	Role of p53 in aziridinylbenzoquinone-induced p21waf1 expression. Oncogene, 1998, 17, 357-365.	2.6	8
97	The Lag Phase. Free Radical Research, 1998, 28, 601-609.	1.5	96
98	Basic mechanisms of antioxidant activity. BioFactors, 1997, 6, 391-397.	2.6	149
99	The Metabolism of Tyramine by Monoamine Oxidase A/B Causes Oxidative Damage to Mitochondrial DNA. Archives of Biochemistry and Biophysics, 1996, 335, 295-304.	1.4	208
100	The reaction of ascorbic acid with different heme iron redox states of myoglobin. FEBS Letters, 1993, 332, 287-290.	1.3	102
101	Low level chemiluminescence of alveolar macrophages. FEBS Letters, 1981, 123, 225-228.	1.3	28
102	Low-level chemiluminescence of bovine heart submitochondrial particles. Biochemical Journal, 1980, 186, 659-667.	1.7	87
103	Low-level chemiluminescence of hydroperoxide-supplemented cytochrome <i>c</i> . Biochemical Journal, 1980, 187, 131-140.	1.7	97
104	Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria. Biochemical Journal, 1980, 188, 31-37.	1.7	249
105	Spectral analysis of the low level chemiluminescence of H2 O2 -supplemented ferricytochrme c. FEBS Letters, 1980, 112, 285-288.	1.3	24
106	Spontaneous chemiluminescence of soybean seeds. FEBS Letters, 1980, 113, 29-32.	1.3	16
107	Low level chemiluminescence of the cytochrome c -catalyzed decomposition of hydrogen peroxide. FEBS Letters, 1980, 113, 141-144.	1.3	23
108	Partial spectral analysis of the hydroperoxide-induced chemiluminescence of the perfused lung. FEBS Letters, 1980, 111, 413-418.	1.3	47

#	Article	IF	CITATIONS
109	Low level chemiluminescence of intact polymorphonuclear leukocytes. FEBS Letters, 1979, 102, 38-42.	1.3	28
110	Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Archives of Biochemistry and Biophysics, 1977, 180, 248-257.	1.4	803
111	Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Letters, 1975, 54, 311-314.	1.3	354