Francisco Portillo Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9537585/publications.pdf

Version: 2024-02-01

73 papers 8,255 citations

34 h-index

117571

72 g-index

75 all docs

75 docs citations

75 times ranked 10282 citing authors

#	Article	IF	Citations
1	Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma. Gut, 2023, 72, 345-359.	6.1	15
2	Loxl3 Promotes Melanoma Progression and Dissemination Influencing Cell Plasticity and Survival. Cancers, 2022, 14, 1200.	1.7	8
3	Loxl2 and Loxl3 Paralogues Play Redundant Roles during Mouse Development. International Journal of Molecular Sciences, 2022, 23, 5730.	1.8	4
4	E2A Modulates Stemness, Metastasis, and Therapeutic Resistance of Breast Cancer. Cancer Research, 2021, 81, 4529-4544.	0.4	18
5	Protein-protein interactions involving enzymes of the mammalian methionine and homocysteine metabolism. Biochimie, 2020, 173, 33-47.	1.3	25
6	Lysyl Oxidase-Like 2 Protects against Progressive and Aging Related Knee Joint Osteoarthritis in Mice. International Journal of Molecular Sciences, 2019, 20, 4798.	1.8	12
7	UPR: An Upstream Signal to EMT Induction in Cancer. Journal of Clinical Medicine, 2019, 8, 624.	1.0	30
8	Lysyl oxidase-like 3 is required for melanoma cell survival by maintaining genomic stability. Cell Death and Differentiation, 2018, 25, 935-950.	5.0	40
9	Identification of hepatic protein-protein interaction targets for betaine homocysteine S-methyltransferase. PLoS ONE, 2018, 13, e0199472.	1.1	4
10	<scp>EMT</scp> : Present and future in clinical oncology. Molecular Oncology, 2017, 11, 718-738.	2.1	205
11	LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway. Scientific Reports, 2017, 7, 44988.	1.6	93
12	Lysyl Oxidase–like Protein LOXL2 Promotes Lung Metastasis of Breast Cancer. Cancer Research, 2017, 77, 5846-5859.	0.4	117
13	The Oncogene PDRG1 Is an Interaction Target of Methionine Adenosyltransferases. PLoS ONE, 2016, 11, e0161672.	1.1	15
14	Specific phosphoantibodies reveal two phosphorylation sites in yeast Pma1 in response to glucose. FEMS Yeast Research, 2015, 15, fov030.	1.1	21
15	Lysyl oxidaseâ€ike 2 represses Notch1 expression in the skin to promote squamous cell carcinoma progression. EMBO Journal, 2015, 34, 1090-1109.	3.5	79
16	Loss of Snail2 favors skin tumor progression by promoting the recruitment of myeloid progenitors. Carcinogenesis, 2015, 36, 585-597.	1.3	5
17	Zeb1 and <scp>S</scp> nail1 engage mi <scp>R</scp> â€200f transcriptional and epigenetic regulation during <scp>EMT</scp> . International Journal of Cancer, 2015, 136, E62-73.	2.3	52
18	LOXL2 catalytically inactive mutants mediate epithelial-to-mesenchymal transition. Biology Open, 2014, 3, 129-137.	0.6	60

#	Article	IF	Citations
19	Sin3b Interacts with Myc and Decreases Myc Levels. Journal of Biological Chemistry, 2014, 289, 22221-22236.	1.6	29
20	Differential Role of Snail1 and Snail2 Zinc Fingers in E-cadherin Repression and Epithelial to Mesenchymal Transition. Journal of Biological Chemistry, 2014, 289, 930-941.	1.6	134
21	eEF1A Mediates the Nuclear Export of SNAG-Containing Proteins via the Exportin5-Aminoacyl-tRNA Complex. Cell Reports, 2013, 5, 727-737.	2.9	22
22	Characterization of Two Second-Site Mutations Preventing Wild Type Protein Aggregation Caused by a Dominant Negative PMA1 Mutant. PLoS ONE, 2013, 8, e67080.	1.1	0
23	E47 and Id1 Interplay in Epithelial-Mesenchymal Transition. PLoS ONE, 2013, 8, e59948.	1.1	46
24	Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in CLCN1 gene. Neuromuscular Disorders, 2012, 22, 231-243.	0.3	31
25	Characterization of the SNAG and SLUG Domains of Snail2 in the Repression of E-Cadherin and EMT Induction: Modulation by Serine 4 Phosphorylation. PLoS ONE, 2012, 7, e36132.	1.1	47
26	Gene expression profiling of yeasts overexpressing wild type or misfolded Pma1 variants reveals activation of the Hog1 MAPK pathway. Molecular Microbiology, 2011, 79, 1339-1352.	1.2	6
27	Lysyl oxidaseâ€ike 2 (LOXL2), a new regulator of cell polarity required for metastatic dissemination of basalâ€ike breast carcinomas. EMBO Molecular Medicine, 2011, 3, 528-544.	3.3	150
28	A Dominant Negative Mutant of Pma1 Interferes with the Folding of the Wild Type Enzyme. Traffic, 2010, 11, 37-47.	1.3	5
29	Phosphorylation of Serine 11 and Serine 92 as New Positive Regulators of Human Snail1 Function: Potential Involvement of Casein Kinase-2 and the cAMP-activated Kinase Protein Kinase A. Molecular Biology of the Cell, 2010, 21, 244-253.	0.9	68
30	Kidins220/ARMS Modulates the Activity of Microtubule-regulating Proteins and Controls Neuronal Polarity and Development. Journal of Biological Chemistry, 2010, 285, 1343-1357.	1.6	55
31	New Insights into the Fructosyltransferase Activity of < i > Schwanniomyces occidentalis < /i > \hat{l}^2 -Fructofuranosidase, Emerging from Nonconventional Codon Usage and Directed Mutation. Applied and Environmental Microbiology, 2010, 76, 7491-7499.	1.4	37
32	An emerging role for class I bHLH E2-2 proteins in EMT regulation and tumor progression. Cell Adhesion and Migration, 2010, 4, 56-60.	1.1	33
33	The class I bHLH factors E2-2A and E2-2B regulate EMT. Journal of Cell Science, 2009, 122, 1014-1024.	1.2	110
34	The morphological and molecular features of the epithelial-to-mesenchymal transition. Nature Protocols, 2009, 4, 1591-1613.	5.5	185
35	Lysyl Oxidase–Like 2 as a New Poor Prognosis Marker of Squamous Cell Carcinomas. Cancer Research, 2008, 68, 4541-4550.	0.4	192
36	SNAI1 Is Required for Tumor Growth and Lymph Node Metastasis of Human Breast Carcinoma MDA-MB-231 Cells. Cancer Research, 2007, 67, 11721-11731.	0.4	184

#	Article	IF	CITATIONS
37	Efficient degradation of misfolded mutant Pma1 by endoplasmic reticulumâ€associated degradation requires Atg19 and the Cvt/autophagy pathway. Molecular Microbiology, 2007, 63, 1069-1077.	1.2	15
38	Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 164-170.	1.4	58
39	Genetic Profiling of Epithelial Cells Expressing E-Cadherin Repressors Reveals a Distinct Role for Snail, Slug, and E47 Factors in Epithelial-Mesenchymal Transition. Cancer Research, 2006, 66, 9543-9556.	0.4	285
40	A molecular role for lysyl oxidase-like 2 enzyme in Snail regulation and tumor progression. EMBO Journal, 2005, 24, 3446-3458.	3.5	409
41	Switching On-Off Snail: LOXL2 Versus GSK3?. Cell Cycle, 2005, 4, 1749-1752.	1.3	73
42	A role for the non-phosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport. FEBS Letters, 2005, 579, 512-516.	1.3	53
43	Co-operation between enhancers modulates quantitative expression from the Drosophila Paramyosin/miniparamyosin gene in different muscle types. Mechanisms of Development, 2005, 122, 681-694.	1.7	6
44	Transcriptional regulation of cadherins during development and carcinogenesis. International Journal of Developmental Biology, 2004, 48, 365-375.	0.3	495
45	Ycf1-dependent cadmium detoxification by yeast requires phosphorylation of residues Ser908and Thr911. FEBS Letters, 2004, 577, 322-326.	1.3	34
46	A New Role for E12/E47 in the Repression of E-cadherin Expression and Epithelial-Mesenchymal Transitions. Journal of Biological Chemistry, 2001, 276, 27424-27431.	1.6	395
47	The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2000, 2, 76-83.	4.6	3,208
48	Regulation of plasma membrane H+-ATPase in fungi and plants. BBA - Biomembranes, 2000, 1469, 31-42.	7.9	167
49	Regulation of Yeast H + -ATPase by Protein Kinases Belonging to a Family Dedicated to Activation of Plasma Membrane Transporters. Molecular and Cellular Biology, 2000, 20, 7654-7661.	1.1	167
50	Genetic characterization of the 534DPPR motif of the yeast plasma membrane H+-ATPase. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1468, 99-106.	1.4	2
51	Sequencing and heterologous expression in Saccharomyces cerevisiae of a Cryptococcus neoformans cDNA encoding a plasma membrane H + -ATPase. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1509, 103-110.	1.4	4
52	The cell wall integrity/remodeling MAPK cascade is involved in glucose activation of the yeast plasma membrane H + -ATPase. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1509, 189-194.	1.4	13
53	Characterization of non-dominant lethal mutations in the yeast plasma membrane H+-ATPase gene. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1417, 32-36.	1.4	2
54	Characterization of an Allele-Nonspecific Intragenic Suppressor in the Yeast Plasma Membrane H+-ATPase Gene (PMA1). Genetics, 1998, 150, 11-19.	1.2	11

#	Article	IF	Citations
55	Characterization of dominant lethal mutations in the yeast plasma membrane H+ -ATPase gene. FEBS Letters, 1997, 402, 136-140.	1.3	30
56	Glucose activation of the yeast plasma membrane H+-ATPase requires the ubiquitin-proteasome proteolytic pathway. FEBS Letters, 1997, 411, 308-312.	1.3	31
57	Yeast geneYOR137cis involved in the activation of the yeast plasma membrane H+-ATPase by glucose. FEBS Letters, 1997, 420, 17-19.	1.3	17
58	The plasma membrane H+-ATPase of fungi and plants. Biomembranes: A Multi-Volume Treatise, 1996, 5, 225-240.	0.1	O
59	Sequence analysis of a 14·6 kb DNA fragment of Saccharomyces cerevisiae chromosome VII reveals SEC27, SSM1b, a putative S-adenosylmethionine-dependent enzyme and six new open reading frames. Yeast, 1996, 12, 887-892.	0.8	6
60	Genetic Analysis of the Fluorescein Isothiocyanate Binding Site of the Yeast Plasma Membrane H+-ATPase. Journal of Biological Chemistry, 1995, 270, 8655-8659.	1.6	16
61	Characterization of mutations that overcome the toxic effect of glucose on phosphoglucose isomerase less strains of Saccharomyces cerevisiae. FEMS Microbiology Letters, 1993, 106, 233-237.	0.7	17
62	Low activity of the yeast cAMP-dependent protein kinase catalytic subunit Tpk3 is due to the poor expression of the TPK3 gene. FEBS Journal, 1993, 213, 501-506.	0.2	29
63	Studies of the plasma membrane H+-ATPase of yeast and plants. Biochemical Society Transactions, 1992, 20, 562-566.	1.6	12
64	In vivo activation of the yeast plasma membrane ATPase during nitrogen starvation Identification of the regulatory domain that controls activation. FEBS Letters, 1992, 300, 271-274.	1.3	43
65	Analysis of the regulatory domain of yeast plasma membrane H+-ATPase by directed mutagenesis and intragenic suppression. FEBS Letters, 1991, 287, 71-74.	1.3	109
66	Catalytic and regulatory sites of yeast plasma membrane H+-ATPase studied by directed mutagenesis. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1018, 195-199.	0.5	68
67	Growth control strength and active site of yeast plasma membrane ATPase studied by site-directed mutagenesis. FEBS Journal, 1989, 186, 501-507.	0.2	105
68	Deletion analysis of yeast plasma membrane H+-ATPase and identification of a regulatory domain at the carboxyl-terminus. FEBS Letters, 1989, 247, 381-385.	1.3	130
69	Active sites of yeast H+-ATPase studied by directed mutagenesis. Biochemical Society Transactions, 1989, 17, 973-975.	1.6	4
70	Purification and properties of three intracellular proteinases from Candida albicans. Biochimica Et Biophysica Acta - General Subjects, 1986, 881, 229-235.	1.1	20
71	Mitochondrial resistance to miconazole in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1985, 199, 495-499.	2.4	13
72	Activation of yeast plasma membrane ATPase by phorbol ester. FEBS Letters, 1985, 192, 95-98.	1.3	43

#	Article	lF	CITATIONS
73	Mode of action of miconazole on yeasts: inhibition of the mitochondrial ATPase. FEBS Journal, 1984, 143, 273-276.	0.2	25