Rachel A Caruso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9537526/publications.pdf

Version: 2024-02-01

156 papers 17,553 citations

20817 60 h-index 21540 114 g-index

161 all docs

161 docs citations

161 times ranked

18982 citing authors

#	Article	IF	CITATIONS
1	Metal–organic frameworks for chemical sensing devices. Materials Horizons, 2021, 8, 2387-2419.	12.2	139
2	Confined Synthesis: From Layered Titanate to Highly Efficient and Durable Mesoporous Cu/TiO ₂ Hydrogen Evolution Photocatalysts. ACS Applied Energy Materials, 2021, 4, 4050-4058.	5.1	8
3	Indium Oxides and Related Indiumâ€based Photocatalysts for Water Treatment: Materials Studied, Photocatalytic Performance, and Special Highlights. Solar Rrl, 2021, 5, 2100086.	5.8	10
4	Hierarchically Porous WO ₃ /CdWO ₄ Fiber-in-Tube Nanostructures Featuring Readily Accessible Active Sites and Enhanced Photocatalytic Effectiveness for Antibiotic Degradation in Water. ACS Applied Materials & Samp; Interfaces, 2021, 13, 21138-21148.	8.0	64
5	Rollâ€toâ€Roll Processes for the Fabrication of Perovskite Solar Cells under Ambient Conditions. Solar Rrl, 2021, 5, 2100341.	5.8	22
6	Use of metamodels for rapid discovery of narrow bandgap oxide photocatalysts. IScience, 2021, 24, 103068.	4.1	17
7	Fluoride Perovskite (KNi _{<i>x</i>} Co _{1–<i>x</i>} F ₃) Oxygen-Evolution Electrocatalyst with Highly Polarized Electronic Configuration. ACS Applied Energy Materials, 2021, 4, 13425-13430.	5.1	12
8	Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chemical Society Reviews, 2021, 50, 13692-13729.	38.1	97
9	Trace-Level Fluorination of Mesoporous TiO ₂ Improves Photocatalytic and Pb(II) Adsorbent Performances. Inorganic Chemistry, 2020, 59, 17631-17637.	4.0	9
10	Low Temperature Synthesis of TiO2 Nanoparticles with Tuneable Phase Composition and their Photocatalytic Activity. Australian Journal of Chemistry, 2020, , .	0.9	0
11	The influence of ruthenium substitution in LaCoO ₃ towards bi-functional electrocatalytic activity for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 20612-20620.	10.3	32
12	Advancing Metalâ€Organic Frameworks toward Smart Sensing: Enhanced Fluorescence by a Photonic Metalâ€Organic Framework for Organic Vapor Sensing. Advanced Optical Materials, 2020, 8, 2000961.	7.3	36
13	Low-Temperature Solution-Processed Amorphous Titania Nanowire Thin Films for 1 cm ² Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 11450-11458.	8.0	9
14	Ordered Mesoporous Graphitic Carbon/Iron Carbide Composites with High Porosity as a Sulfur Host for Liâ€"S Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13194-13204.	8.0	34
15	Printing approaches to inorganic semiconductor photocatalyst fabrication. Journal of Materials Chemistry A, 2019, 7, 10858-10878.	10.3	40
16	Tricomponent brookite/anatase TiO ₂ /g-C ₃ N ₄ heterojunction in mesoporous hollow microspheres for enhanced visible-light photocatalysis. Journal of Materials Chemistry A, 2018, 6, 7236-7245.	10.3	74
17	Solution-processed Zn2SnO4 electron transporting layer for efficient planar perovskite solar cells. Materials Today Energy, 2018, 7, 260-266.	4.7	30
18	Enhanced Electrochromic Properties of WO ₃ Nanotree-like Structures Synthesized via a Two-Step Solvothermal Process Showing Promise for Electrochromic Window Application. ACS Applied Nano Materials, 2018, 1, 2552-2558.	5.0	84

#	Article	IF	CITATIONS
19	High-Performance Coral Reef-like Carbon Nitrides: Synthesis and Application in Photocatalysis and Heavy Metal Ion Adsorption. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4540-4547.	8.0	94
20	Monodisperse anatase titania microspheres with high-thermal stability and large pore size ($\hat{a}^{1}/480$ nm) as efficient photocatalysts. Journal of Materials Chemistry A, 2017, 5, 3645-3654.	10.3	26
21	Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells. Advanced Materials, 2017, 29, 1601715.	21.0	104
22	Recent progress in hybrid perovskite solar cells based on n-type materials. Journal of Materials Chemistry A, 2017, 5, 10092-10109.	10.3	136
23	Perovskite Solar Cells: Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells (Adv. Mater. 20/2017). Advanced Materials, 2017, 29, .	21.0	3
24	Electrospun PVDF–TiO2 with tuneable TiO2 crystal phases: synthesis and application in photocatalytic redox reactions. Journal of Materials Chemistry A, 2017, 5, 641-648.	10.3	29
25	Integrated planar and bulk dual heterojunctions capable of efficient electron and hole extraction for perovskite solar cells with >17% efficiency. Nano Energy, 2017, 32, 187-194.	16.0	23
26	Mesoporous TiO ₂ /g-C ₃ N ₄ Microspheres with Enhanced Visible-Light Photocatalytic Activity. Journal of Physical Chemistry C, 2017, 121, 22114-22122.	3.1	118
27	High Reversible Pseudocapacity in Mesoporous Yolk–Shell Anatase TiO ₂ /TiO ₂ (B) Microspheres Used as Anodes for Liâ€lon Batteries. Advanced Functional Materials, 2017, 27, 1703270.	14.9	99
28	Thin Films of Tin Oxide Nanosheets Used as the Electron Transporting Layer for Improved Performance and Ambient Stability of Perovskite Photovoltaics. Solar Rrl, 2017, 1, 1700117.	5.8	69
29	Three-dimensional titanium oxide nanoarrays for perovskite photovoltaics: surface engineering for cascade charge extraction and beneficial surface passivation. Sustainable Energy and Fuels, 2017, 1, 1960-1967.	4.9	13
30	Solvent-Mediated Intragranular-Coarsening of CH ₃ NH ₃ Pbl ₃ Thin Films toward High-Performance Perovskite Photovoltaics. ACS Applied Materials & Distribution (1988) amp; Interfaces, 2017, 9, 31959-31967.	8.0	23
31	Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magnéli Ti ₄ O ₇ Microspheres for Highâ€Performance Li–S Battery. Advanced Energy Materials, 2017, 7, 1601616.	19.5	130
32	Embedding CeO2 nanocontainers in a TiO2 coating on glass surfaces. AIMS Bioengineering, 2017, 4, 171-178.	1.1	0
33	Embedding CeO2 nanocontainers in a TiO2 coating on glass surfaces. AIMS Bioengineering, 2017, 4, 171-178.	1.1	0
34	Graphene Photodetectors: Large-Scale Production of Bismuth Chalcogenide and Graphene Heterostructure and Its Application for Flexible Broadband Photodetector (Adv. Electron. Mater.) Tj ETQq0 0 0 rş	gBT5/ :0 verl	ock110 Tf 50 1
35	Largeâ€Scale Production of Bismuth Chalcogenide and Graphene Heterostructure and Its Application for Flexible Broadband Photodetector. Advanced Electronic Materials, 2016, 2, 1600077.	5.1	33
36	Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates. ChemSusChem, 2016, 9, 687-695.	6.8	101

#	Article	IF	CITATIONS
37	N-doped Li ₄ Ti ₅ O ₁₂ nanoflakes derived from 2D protonated titanate for high performing anodes in lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 7772-7780.	10.3	39
38	Mesoporous Nitrogenâ€Modified Titania with Enhanced Dye Adsorption Capacity and Visible Light Photocatalytic Activity. ChemistrySelect, 2016, 1, 4868-4878.	1.5	20
39	Sub-100°C solution processed amorphous titania nanowire thin films for high-performance perovskite solar cells. Journal of Power Sources, 2016, 329, 17-22.	7.8	14
40	Optimizing semiconductor thin films with smooth surfaces and well-interconnected networks for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12463-12470.	10.3	28
41	Enhanced electrochromic performance of WO ₃ nanowire networks grown directly on fluorine-doped tin oxide substrates. Journal of Materials Chemistry C, 2016, 4, 10500-10508.	5.5	60
42	Perovskite Solar Cells: Solventâ€Mediated Dimension Tuning of Semiconducting Oxide Nanostructures as Efficient Charge Extraction Thin Films for Perovskite Solar Cells with Efficiency Exceeding 16% (Adv. Energy Mater. 7/2016). Advanced Energy Materials, 2016, 6, .	19.5	0
43	Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17194-17204.	8.0	34
44	Solventâ€Mediated Dimension Tuning of Semiconducting Oxide Nanostructures as Efficient Charge Extraction Thin Films for Perovskite Solar Cells with Efficiency Exceeding 16%. Advanced Energy Materials, 2016, 6, 1502027.	19.5	52
45	Synthesis, characterization, antibacterial activity and cytotoxicity of hollow TiO ₂ -coated CeO ₂ nanocontainers encapsulating silver nanoparticles for controlled silver release. Journal of Materials Chemistry B, 2016, 4, 1166-1174.	5.8	21
46	Parameters responsible for the degradation of CH 3 NH 3 PbI 3 -based solar cells on polymer substrates. Nano Energy, 2016, 22, 211-222.	16.0	18
47	Flowerlike WSe ₂ and WS ₂ microspheres: one-pot synthesis, formation mechanism and application in heavy metal ion sequestration. Chemical Communications, 2016, 52, 4481-4484.	4.1	81
48	Extremely high arsenic removal capacity for mesoporous aluminium magnesium oxide composites. Environmental Science: Nano, 2016, 3, 94-106.	4.3	123
49	Chapter 7. Controlling the Photoanode Mesostructure for Dye-sensitized and Perovskite-sensitized Solar Cells., 2016,, 292-323.		0
50	The Effect of the Scattering Layer in Dyeâ€Sensitized Solar Cells Employing a Cobaltâ€Based Aqueous Gel Electrolyte. ChemSusChem, 2015, 8, 3704-3711.	6.8	23
51	Temperature-induced modulation of mesopore size in hierarchically porous amorphous TiO ₂ /ZrO ₂ beads for improved dye adsorption capacity. Journal of Materials Chemistry A, 2015, 3, 3768-3776.	10.3	26
52	Amphiphile Micelle Structures in the Protic Ionic Liquid Ethylammonium Nitrate and Water. Journal of Physical Chemistry B, 2015, 119, 179-191.	2.6	27
53	Solvothermal Growth of Bismuth Chalcogenide Nanoplatelets by the Oriented Attachment Mechanism: An in Situ PXRD Study. Chemistry of Materials, 2015, 27, 3471-3482.	6.7	51
54	Thin Films of Dendritic Anatase Titania Nanowires Enable Effective Holeâ€Blocking and Efficient Lightâ€Harvesting for Highâ€Performance Mesoscopic Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 3264-3272.	14.9	101

#	Article	IF	CITATIONS
55	Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy, 2015, 18, 118-125.	16.0	232
56	Monodisperse mesoporous anatase beads as high performance and safer anodes for lithium ion batteries. Nanoscale, 2015, 7, 17947-17956.	5.6	21
57	High-Throughput Synthesis and Screening of Titania-Based Photocatalysts. ACS Combinatorial Science, 2015, 17, 548-569.	3.8	54
58	Macro-/mesoporous titania thin films: analysing the effect of pore architecture on photocatalytic activity using high-throughput screening. Journal of Materials Chemistry A, 2015, 3, 24557-24567.	10.3	21
59	Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. Journal of Power Sources, 2015, 278, 325-331.	7.8	89
60	Effect of cosolvents on the self-assembly of a non-ionic polyethylene oxide–polypropylene oxide–polyethylene oxide block copolymer in the protic ionic liquid ethylammonium nitrate. Journal of Colloid and Interface Science, 2015, 441, 46-51.	9.4	7
61	Effect of TiO ₂ microbead pore size on the performance of DSSCs with a cobalt based electrolyte. Nanoscale, 2014, 6, 13787-13794.	5.6	19
62	Quasi-Solid-State Dye-Sensitized Solar Cells on Plastic Substrates. Journal of Physical Chemistry C, 2014, 118, 16366-16374.	3.1	21
63	Understanding Solvothermal Crystallization of Mesoporous Anatase Beads by In Situ Synchrotron PXRD and SAXS. Chemistry of Materials, 2014, 26, 4563-4571.	6.7	37
64	Direct spun aligned carbon nanotube web-reinforced proton exchange membranes for fuel cells. RSC Advances, 2014, 4, 32787-32790.	3.6	21
65	Charge Transport in Photoanodes Constructed with Mesoporous TiO ₂ Beads for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16635-16642.	3.1	8
66	Hierarchically Porous Titania Networks with Tunable Anatase:Rutile Ratios and Their Enhanced Photocatalytic Activities. ACS Applied Materials & Enhances, 2014, 6, 13129-13137.	8.0	73
67	Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy, 2014, 10, 10-18.	16.0	504
68	Mesoporous titania beads for flexible dye-sensitized solar cells. Journal of Materials Chemistry C, 2014, 2, 1284-1289.	5.5	16
69	Versatile inorganic-organic hybrid WO x -ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis. Nano Research, 2014, 7, 903-916.	10.4	59
70	Surfaceâ€Metastable Phaseâ€Initiated Seeding and Ostwald Ripening: A Facile Fluorineâ€Free Process towards Spherical Fluffy Core/Shell, Yolk/Shell, and Hollow Anatase Nanostructures. Angewandte Chemie - International Edition, 2013, 52, 10986-10991.	13.8	99
71	Methyl orange removal by combined visible-light photocatalysis and membrane distillation. Dyes and Pigments, 2013, 98, 106-112.	3.7	64
72	Mesoporous Europo-Gadolinosilicate Nanoparticles as Bimodal Medical Imaging Agents and a Potential Theranostic Platform. Advanced Healthcare Materials, 2013, 2, 836-845.	7.6	15

#	Article	IF	Citations
73	Mesoporous Titanium Zirconium Oxide Nanospheres with Potential for Drug Delivery Applications. ACS Applied Materials & Drug Delivery Applications.	8.0	43
74	Engineering of Monodisperse Mesoporous Titania Beads for Photocatalytic Applications. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9421-9428.	8.0	49
75	Mesoporous gadolino–aluminosilicate nanoparticles as magnetic resonance imaging contrast agents. Journal of Materials Chemistry B, 2013, 1, 1219.	5.8	7
76	Recent Progress in the Synthesis of Spherical Titania Nanostructures and Their Applications. Advanced Functional Materials, 2013, 23, 1356-1374.	14.9	195
77	High surface area mesoporous titanium–zirconium oxide nanofibrous web: a heavy metal ion adsorbent. Journal of Materials Chemistry A, 2013, 1, 5847.	10.3	56
78	Amine-Functionalized Titania-based Porous Structures for Carbon Dioxide Postcombustion Capture. Journal of Physical Chemistry C, 2013, 117, 9747-9757.	3.1	28
79	One-Pot Preparation and CO ₂ Adsorption Modeling of Porous Carbon, Metal Oxide, and Hybrid Beads. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5009-5014.	8.0	13
80	Enhanced Photocatalytic Activity: Macroporous Electrospun Mats of Mesoporous Au/TiO ₂ Nanofibers. ChemCatChem, 2013, 5, 2646-2654.	3.7	28
81	Construction of nanostructured electrodes on flexible substrates using pre-treated building blocks. Applied Physics Letters, 2012, 100, .	3.3	31
82	High-Throughput Preparation of Hexagonally Ordered Mesoporous Silica and Gadolinosilicate Nanoparticles for use as MRI Contrast Agents. ACS Combinatorial Science, 2012, 14, 443-450.	3.8	11
83	Preparation of Boron-Doped Porous Titania Networks Containing Gold Nanoparticles with Enhanced Visible-Light Photocatalytic Activity. ACS Applied Materials & Enhanced States (2012, 4, 476-482.)	8.0	61
84	Sol–gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates. Journal of Materials Chemistry, 2012, 22, 4073.	6.7	63
85	Spiky Mesoporous Anatase Titania Beads: A Metastable Ammonium Titanateâ€Mediated Synthesis. Chemistry - A European Journal, 2012, 18, 13762-13769.	3.3	27
86	Uranyl-Sorption Properties of Amorphous and Crystalline TiO ₂ /ZrO ₂ Millimeter-Sized Hierarchically Porous Beads. Environmental Science & Environmental Sc	10.0	52
87	Long-range ordered lyotropic liquid crystals in intermediate-range ordered protic ionic liquid used as templates for hierarchically porous silica. Journal of Materials Chemistry, 2012, 22, 10069.	6.7	25
88	Synthesis and Photocatalytic Activity of Titania Monoliths Prepared with Controlled Macro- and Mesopore Structure. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4123-4130.	8.0	24
89	Zn-doped TiO2 electrodes in dye-sensitized solar cells for enhanced photocurrent. Journal of Materials Chemistry, 2012, 22, 17128.	6.7	65
90	Collagen-Templated Bioactive Titanium Dioxide Porous Networks for Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4717-4725.	8.0	41

#	Article	IF	Citations
91	Solvothermal synthesis and photocatalytic application of porous Au/TiO2 nanocomposites. Journal of Materials Chemistry, 2012, 22, 11701.	6.7	31
92	Lyotropic liquid crystalline phase behaviour in amphiphile–protic ionic liquid systems. Physical Chemistry Chemical Physics, 2012, 14, 3825.	2.8	47
93	Facile Synthesis of Monodisperse Mesoporous Zirconium Titanium Oxide Microspheres with Varying Compositions and High Surface Areas for Heavy Metal Ion Sequestration. Advanced Functional Materials, 2012, 22, 1966-1971.	14.9	73
94	One-pot synthesis of silica monoliths with hierarchically porous structure. Microporous and Mesoporous Materials, 2012, 148, 137-144.	4.4	21
95	Strong Silica Monoliths with Large Mesopores Prepared Using Agarose Gel Templates. Langmuir, 2011, 27, 2124-2127.	3.5	31
96	Monitoring Bisphosphonate Surface Functionalization and Acid Stability of Hierarchically Porous Titanium Zirconium Oxides. Langmuir, 2011, 27, 12985-12995.	3.5	25
97	Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles. Journal of Materials Chemistry, 2011, 21, 20-28.	6.7	125
98	Flexible dye-sensitized solar cells containing multiple dyes in discrete layers. Energy and Environmental Science, 2011, 4, 2803.	30.8	41
99	Noble Metalâ€Modified Porous Titania Networks and their Application as Photocatalysts. ChemCatChem, 2011, 3, 1763-1771.	3.7	28
100	Effect of Mesoporous TiO2 Bead Diameter in Working Electrodes on the Efficiency of Dye-Sensitized Solar Cells. ChemSusChem, 2011, 4, 1498-1503.	6.8	40
101	Al-doped TiO2 Photoanode for Dye-Sensitized Solar Cells. Australian Journal of Chemistry, 2011, 64, 820.	0.9	24
102	Dualâ€Function Scattering Layer of Submicrometerâ€Sized Mesoporous TiO ₂ Beads for Highâ€Efficiency Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2010, 20, 1301-1305.	14.9	385
103	One-Pot Preparation and Uranyl Adsorption Properties of Hierarchically Porous Zirconium Titanium Oxide Beads using Phase Separation Processes to Vary Macropore Morphology. Langmuir, 2010, 26, 17581-17588.	3.5	29
104	Size Matters: Incorporation of Poly(acrylic acid) and Small Molecules into Hierarchically Porous Metal Oxides Prepared with and without Templates. Langmuir, 2010, 26, 14203-14209.	3.5	16
105	One-Pot Synthesis of Hierarchically Structured Ceramic Monoliths with Adjustable Porosity. Chemistry of Materials, 2010, 22, 4379-4385.	6.7	62
106	Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous TiO ₂ Beads Achieve Power Conversion Efficiencies Over 10%. ACS Nano, 2010, 4, 4420-4425.	14.6	412
107	Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14a^23 nm). Journal of the American Chemical Society, 2010, 132, 4438-4444.	13.7	405
108	High performance LiFePO4 electrode materials: influence of colloidal particle morphology and porosity on lithium-ion battery power capability. Energy and Environmental Science, 2010, 3, 813.	30.8	66

#	Article	IF	CITATIONS
109	Mesoporous Anatase TiO ₂ Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for Highâ€Performance Dyeâ€Sensitized Solar Cells. Advanced Materials, 2009, 21, 2206-2210.	21.0	926
110	Pore Size and Volume Effects on the Incorporation of Polymer into Macro- and Mesoporous Zirconium Titanium Oxide Membranes. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2893-2901.	8.0	32
111	A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode. Applied Physics Letters, 2009, 94, 103102.	3.3	50
112	Hierarchically Porous Monolithic LiFePO ₄ /Carbon Composite Electrode Materials for High Power Lithium Ion Batteries. Chemistry of Materials, 2009, 21, 5300-5306.	6.7	189
113	Template Synthesis and Adsorption Properties of Hierarchically Porous Zirconium Titanium Oxides. Langmuir, 2009, 25, 5286-5293.	3 . 5	73
114	Colloidal Crystal Templating to Produce Hierarchically Porous LiFePO4 Electrode Materials for High Power Lithium Ion Batteries. Chemistry of Materials, 2009, 21, 2895-2903.	6.7	163
115	Plasmon imaging: An efficient TEM-based method for locating noble metal particles dispersed on oxide catalysts at very low densities. Micron, 2008, 39, 344-347.	2,2	10
116	Gold Nanoparticle Incorporation into Porous Titania Networks Using an Agarose Gel Templating Technique for Photocatalytic Applications. Chemistry of Materials, 2008, 20, 3917-3926.	6.7	103
117	Effective gel for gold nanoparticle formation, support and metal oxide templating. Chemical Communications, 2007, , 3060.	4.1	51
118	Modification of mesoporous TiO2electrodes by surface treatment with titanium(IV), indium(III) and zirconium(IV) oxide precursors: preparation, characterization and photovoltaic performance in dye-sensitized nanocrystalline solar cells. Nanotechnology, 2007, 18, 125608.	2.6	60
119	Increased nanopore filling: Effect on monolithic all-solid-state dye-sensitized solar cells. Applied Physics Letters, 2007, 90, 213510.	3.3	61
120	Porous Vanadium/Titanium Oxidesâ€"Synthesis, Characterization, and Photocatalytic Activity. Australian Journal of Chemistry, 2007, 60, 533.	0.9	11
121	Agarose Template for the Fabrication of Macroporous Metal Oxide Structures. Langmuir, 2006, 22, 3332-3336.	3 . 5	104
122	Al-Containing Porous Titanium Dioxide Networks:Â Solâ^'Gel Synthesis within Agarose Gel Template and Photocatalytic Activity. Chemistry of Materials, 2006, 18, 5835-5839.	6.7	32
123	Sol–gel templating of membranes to form thick, porous titania, titania/zirconia and titania/silica films. Journal of Materials Chemistry, 2006, 16, 1414-1420.	6.7	39
124	Titania and Mixed Titania/Aluminum, Gallium, or Indium Oxide Spheres: Sol-Gel/Template Synthesis and Photocatalytic Properties. Advanced Functional Materials, 2005, 15, 239-245.	14.9	82
125	Finite-size and pressure effects on the Raman spectrum of nanocrystalline anataseTiO2. Physical Review B, 2005, 71, .	3.2	374
126	Activity and Selectivity of a Nanostructured CuO/ZrO ₂ Catalyst in the Steam Reforming of Methanol. Catalysis Letters, 2004, 94, 61-68.	2.6	86

#	Article	IF	Citations
127	Micrometer-to-Nanometer Replication of Hierarchical Structures by Using a Surface Sol–Gel Process. Angewandte Chemie - International Edition, 2004, 43, 2746-2748.	13.8	96
128	Template Synthesis and Photocatalytic Properties of Porous Metal Oxide Spheres Formed by Nanoparticle Infiltration. Chemistry of Materials, 2004, 16, 2287-2292.	6.7	270
129	Synthesis of Microporous Silica Templated by Gelatin. Chemistry Letters, 2004, 33, 202-203.	1.3	10
130	HRTEM study of Cu/ZrO2 catalyst. An evidence of a new perovskite-like oxide ZrCuO3. Journal of Materials Science Letters, 2003, 22, 335-337.	0.5	1
131	Inorganic Macroporous Films from Preformed Nanoparticles and Membrane Templates: Synthesis and Investigation of Photocatalytic and Photoelectrochemical Properties. Advanced Functional Materials, 2003, 13, 789-794.	14.9	102
132	Photocatalytic Properties of Porous Metal Oxide Networks Formed by Nanoparticle Infiltration in a Polymer Gel Template. Journal of Physical Chemistry B, 2003, 107, 952-957.	2.6	92
133	Nanocasting and Nanocoating. Topics in Current Chemistry, 2003, , 91-118.	4.0	44
134	Template synthesis of porous gold microspheres. Chemical Communications, 2003, , 1478.	4.1	43
135	Sonochemical Formation of Gold Sols. Langmuir, 2002, 18, 7831-7836.	3.5	156
136	Photocatalytic Activities of Porous Titania and Titania/Zirconia Structures Formed by Using a Polymer Gel Templating Technique. Chemistry of Materials, 2002, 14, 5103-5108.	6.7	181
137	Templating of Porous Polymeric Beads to Form Porous Silica and Titania Spheres. Advanced Materials, 2002, 14, 1768-1772.	21.0	104
138	Silica Films with Bimodal Pore Structure Prepared by Using Membranes as Templates and Amphiphiles as Porogens. Advanced Functional Materials, 2002, 12, 307.	14.9	83
139	Preparation and characterization of CuO–ZrO2 nanopowders. Journal of Materials Chemistry, 2002, 12, 1442-1445.	6.7	38
140	Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach. Chemistry of Materials, 2001, 13, 109-116.	6.7	579
141	Modification of TiO2Network Structures Using a Polymer Gel Coating Technique. Chemistry of Materials, 2001, 13, 1114-1123.	6.7	86
142	Solâ^'Gel Nanocoating:Â An Approach to the Preparation of Structured Materials. Chemistry of Materials, 2001, 13, 3272-3282.	6.7	447
143	Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal SpheresA Novel Route to Tune Pore Morphology. Chemistry of Materials, 2001, 13, 364-371.	6.7	174
144	Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres. Chemistry of Materials, 2001, 13, 400-409.	6.7	529

#	Article	IF	CITATIONS
145	Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles. Advanced Materials, 2001, 13, 740-744.	21.0	385
146	Titanium Dioxide Tubes from Sol–Gel Coating of Electrospun Polymer Fibers. Advanced Materials, 2001, 13, 1577.	21.0	381
147	Photodegradation of SiO ₂ -Coated CdS Nanoparticles within Silica Gels. Journal of Nanoscience and Nanotechnology, 2001, 1, 95-99.	0.9	20
148	Cellulose Acetate Templates for Porous Inorganic Network Fabrication. Advanced Materials, 2000, 12, 1921-1923.	21.0	128
149	Sonochemical formation of colloidal platinum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 169, 219-225.	4.7	64
150	Hydrophilic gels with new superstructures and their hybrids by nanocasting technologies. Macromolecular Symposia, 2000, 152, 163-172.	0.7	17
151	Morphology Variation of Porous Polymer Gels by Polymerization in Lyotropic Surfactant Phases. Macromolecules, 1999, 32, 1383-1389.	4.8	148
152	Production of Hollow Microspheres from Nanostructured Composite Particles. Chemistry of Materials, 1999, 11, 3309-3314.	6.7	291
153	Sonochemistry and Sonoluminescence in Aqueous AuCl4- Solutions in the Presence of Surface-Active Solutes. Journal of Physical Chemistry B, 1999, 103, 9231-9236.	2.6	55
154	Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. , 1998, 282, 1111-1114.		3,921
155	Porous "Coral-like―TiO2Structures Produced by Templating Polymer Gels. Langmuir, 1998, 14, 6333-6336.	3.5	98
156	Ultrasound-induced formation and dissolution of colloidal CdS. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1791-1795.	1.7	66