

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9537176/publications.pdf Version: 2024-02-01

LIFUN

#	Article	IF	CITATIONS
1	Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in typeÂ2 diabetic mice and hepatocytes. Clinical Science, 2015, 129, 839-850.	4.3	263
2	NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension. Cell Death and Disease, 2017, 8, e3074-e3074.	6.3	179
3	FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1867-1875.	3.8	168
4	FNDC5 Alleviates Hepatosteatosis by Restoring AMPK/mTOR-Mediated Autophagy, Fatty Acid Oxidation, and Lipogenesis in Mice. Diabetes, 2016, 65, 3262-3275.	0.6	114
5	The Small Hydrophobic Protein of the Human Respiratory Syncytial Virus Forms Pentameric Ion Channels. Journal of Biological Chemistry, 2012, 287, 24671-24689.	3.4	106
6	FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity. Metabolism: Clinical and Experimental, 2018, 83, 31-41.	3.4	105
7	Salusin-β Promotes Vascular Smooth Muscle Cell Migration and Intimal Hyperplasia After Vascular Injury <i>via</i> ROS/NFκB/MMP-9 Pathway. Antioxidants and Redox Signaling, 2016, 24, 1045-1057.	5.4	94
8	MiR155â€5p in adventitial fibroblastsâ€derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensinâ€converting enzyme expression. Journal of Extracellular Vesicles, 2020, 9, 1698795.	12.2	89
9	β-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes. Scientific Reports, 2016, 6, 21924.	3.3	73
10	Salusin-Î ² contributes to vascular remodeling associated with hypertension via promoting vascular smooth muscle cell proliferation and vascular fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1709-1718.	3.8	63
11	Alternative Splicing at C Terminus of CaV1.4 Calcium Channel Modulates Calcium-dependent Inactivation, Activation Potential, and Current Density. Journal of Biological Chemistry, 2012, 287, 832-847.	3.4	56
12	Exosome-Mediated Transfer of ACE (Angiotensin-Converting Enzyme) From Adventitial Fibroblasts of Spontaneously Hypertensive Rats Promotes Vascular Smooth Muscle Cell Migration. Hypertension, 2018, 72, 881-888.	2.7	56
13	Up-Regulation of MiR-452 Inhibits Metastasis of Non-Small Cell Lung Cancer by Regulating BMI1. Cellular Physiology and Biochemistry, 2015, 37, 387-398.	1.6	55
14	Salusin-Î ² in paraventricular nucleus increases blood pressure and sympathetic outflow via vasopressin in hypertensive rats. Cardiovascular Research, 2013, 98, 344-351.	3.8	49
15	Urocortin's Inhibition of Tumor Growth and Angiogenesis in Hepatocellular Carcinoma via Corticotrophin-Releasing Factor Receptor 2. Cancer Investigation, 2008, 26, 359-368.	1.3	45
16	Mutations in voltage-gated L-type calcium channel: implications in cardiac arrhythmia. Channels, 2018, 12, 201-218.	2.8	45
17	Apelinâ€13 and <scp>APJ</scp> in paraventricular nucleus contribute to hypertension via sympathetic activation and vasopressin release in spontaneously hypertensive rats. Acta Physiologica, 2014, 212, 17-27.	3.8	42
18	Splice Variant Specific Modulation of Ca _V 1.2 Calcium Channel by Galectin-1 Regulates Arterial Constriction. Circulation Research, 2011, 109, 1250-1258.	4.5	37

JUEJII

#	Article	IF	CITATIONS
19	Relaxin in paraventricular nucleus contributes to sympathetic overdrive and hypertension via PI3K-Akt pathway. Neuropharmacology, 2016, 103, 247-256.	4.1	36
20	Long Non-Coding RNA MEG3 Functions as a Competing Endogenous RNA to Regulate HOXA11 Expression by Sponging miR-181a in Multiple Myeloma. Cellular Physiology and Biochemistry, 2018, 49, 87-100.	1.6	34
21	TRPV2-induced Ca2+-calcineurin-NFAT signaling regulates differentiation of osteoclast in multiple myeloma. Cell Communication and Signaling, 2018, 16, 68.	6.5	33
22	Genistein inhibits the development of atherosclerosis via inhibiting NF-κB and VCAM-1 expression in LDLR knockout mice. Canadian Journal of Physiology and Pharmacology, 2008, 86, 777-784.	1.4	30
23	FNDC5 inhibits foam cell formation and monocyte adhesion in vascular smooth muscle cells via suppressing NFκB-mediated NLRP3 upregulation. Vascular Pharmacology, 2019, 121, 106579.	2.1	29
24	Intermedin in Paraventricular Nucleus Attenuates Sympathetic Activity and Blood Pressure via Nitric Oxide in Hypertensive Rats. Hypertension, 2014, 63, 330-337.	2.7	28
25	Exclusion of alternative exon 33 of Ca _V 1.2 calcium channels in heart is proarrhythmogenic. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4288-E4295.	7.1	28
26	Urocortin promotes the development of vasculitis in a rat model of thromboangiitis obliterans via corticotrophinâ€releasing factor type 1 receptors. British Journal of Pharmacology, 2009, 157, 1368-1379.	5.4	27
27	N-glycosylation in the protease domain of trypsin-like serine proteases mediates calnexin-assisted protein folding. ELife, 2018, 7, .	6.0	26
28	Urocortin induced expression of COXâ€2 and ICAMâ€1 via corticotrophinâ€releasing factor type 2 receptor in rat aortic endothelial cells. British Journal of Pharmacology, 2009, 158, 819-829.	5.4	25
29	Modulation of CaV1.2 calcium channel by neuropeptide W regulates vascular myogenic tone via G protein-coupled receptor 7. Journal of Hypertension, 2015, 33, 2431-2442.	0.5	24
30	Aberrant Splicing Induced by Dysregulated Rbfox2 Produces Enhanced Function of Ca _V 1.2 Calcium Channel and Vascular Myogenic Tone in Hypertension. Hypertension, 2017, 70, 1183-1192.	2.7	24
31	Different effects of corticotropin-releasing factor and urocortin 2 on apoptosis of prostate cancer cells in vitro. Journal of Molecular Endocrinology, 2011, 47, 219-227.	2.5	23
32	Intermedin enhances sympathetic outflow via receptor-mediated cAMP/PKA signaling pathway in nucleus tractus solitarii of rats. Peptides, 2013, 47, 1-6.	2.4	22
33	BCL6 Attenuates Proliferation and Oxidative Stress of Vascular Smooth Muscle Cells in Hypertension. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-9.	4.0	21
34	RND3 attenuates oxidative stress and vascular remodeling in spontaneously hypertensive rat via inhibiting ROCK1 signaling. Redox Biology, 2021, 48, 102204.	9.0	21
35	Corticotropin-releasing factor family and its receptors: Tumor therapeutic targets?. Biochemical and Biophysical Research Communications, 2007, 362, 785-788.	2.1	20
36	Corticotropin-releasing factor family and its receptors: pro-inflammatory or anti-inflammatory targets in the periphery?. Inflammation Research, 2011, 60, 715-721.	4.0	20

lueiii

#	Article	IF	CITATIONS
37	Chemical Stimulation of Renal Tissue Induces Sympathetic Activation and a Pressor Response via the Paraventricular Nucleus in Rats. Neuroscience Bulletin, 2020, 36, 143-152.	2.9	19
38	Inhibition of miR-135a-5p attenuates vascular smooth muscle cell proliferation and vascular remodeling in hypertensive rats. Acta Pharmacologica Sinica, 2021, 42, 1798-1807.	6.1	19
39	Superoxide Anions in Paraventricular Nucleus Modulate Adipose Afferent Reflex and Sympathetic Activity in Rats. PLoS ONE, 2013, 8, e83771.	2.5	17
40	Characterization of CaV1.2 exon 33 heterozygous knockout mice and negative correlation between Rbfox1 and CaV1.2 exon 33 expressions in human heart failure. Channels, 2018, 12, 51-57.	2.8	14
41	Galectin-1 attenuates cardiomyocyte hypertrophy through splice-variant specific modulation of CaV1.2 calcium channel. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 218-229.	3.8	14
42	Angiotensin Type 1 Receptors and Superoxide Anion Production in Hypothalamic Paraventricular Nucleus Contribute to Capsaicin-Induced Excitatory Renal Reflex and Sympathetic Activation. Neuroscience Bulletin, 2020, 36, 463-474.	2.9	14
43	Activation of Corticotropin-Releasing Factor Receptor 2 Inhibits the Growth of Human Small Cell Lung Carcinoma Cells. Cancer Investigation, 2009, 28, 146-155.	1.3	9
44	Novel compound heterozygous <i>CLCNKB</i> gene mutations (c.1755A>G/c.848_850delTCT) cause classic Bartter syndrome. American Journal of Physiology - Renal Physiology, 2018, 315, F844-F851.	2.7	8
45	Swietenine extracted from <i>Swietenia</i> relieves myocardial hypertrophy induced by isoprenaline in mice. Environmental Toxicology, 2020, 35, 1343-1351.	4.0	6
46	Aberrant Exon 8/8a Splicing by Downregulated PTBP (Polypyrimidine Tract-Binding Protein) 1 Increases Ca _V 1.2 Dihydropyridine Resistance to Attenuate Vasodilation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2440-2453.	2.4	6
47	A novel mutation in KCNH2 yields loss-of-function of hERG potassium channel in long QT syndrome 2. Pflugers Archiv European Journal of Physiology, 2021, 473, 219-229.	2.8	4
48	Diminished Rbfox1 increases vascular constriction by dynamically regulating alternative splicing of CaV1.2 calcium channel in hypertension. Clinical Science, 2022, 136, 803-817.	4.3	2
49	Alternative Exon Effect on Phenotype of Cav1.2 Channelopathy: Implications in Timothy Syndrome. , 2014, , 205-224.		1
50	Splicing and Editing to Customize CaV Channel Structures for Optimal Neural Function. , 2013, , 289-318.		0