List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9536738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variation Among Biomes in Temporal Dynamics of Aboveground Primary Production. Science, 2001, 291, 481-484.	12.6	1,198
2	Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526, 574-577.	27.8	1,032
3	Convergence across biomes to a common rain-use efficiency. Nature, 2004, 429, 651-654.	27.8	968
4	Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. BioScience, 2008, 58, 811-821.	4.9	959
5	Rainfall Variability, Carbon Cycling, and Plant Species Diversity in a Mesic Grassland. Science, 2002, 298, 2202-2205.	12.6	942
6	Assessing the Response of Terrestrial Ecosystems to Potential Changes in Precipitation. BioScience, 2003, 53, 941.	4.9	680
7	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
8	Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 2003, 6, 509-517.	6.4	591
9	An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 2011, 99, 656-663.	4.0	572
10	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	27.8	564
11	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	12.6	463
12	A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 2009, 90, 3279-3289.	3.2	458
13	Resistance and resilience of a grassland ecosystem to climate extremes. Ecology, 2014, 95, 2646-2656.	3.2	458
14	Finding generality in ecology: a model for globally distributed experiments. Methods in Ecology and Evolution, 2014, 5, 65-73.	5.2	353
15	Does species diversity limit productivity in natural grassland communities?. Ecology Letters, 2007, 10, 680-689.	6.4	351
16	The ecological role of climate extremes: current understanding and future prospects. Journal of Ecology, 2011, 99, 651-655.	4.0	310
17	A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology and Evolution, 2019, 3, 1309-1320.	7.8	304
18	Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology and Evolution, 2018, 2, 1579-1587.	7.8	296

#	Article	IF	CITATIONS
19	Reconciling inconsistencies in precipitation–productivity relationships: implications for climate change. New Phytologist, 2017, 214, 41-47.	7.3	286
20	Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 2020, 108, 2047-2069.	4.0	281
21	Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Frontiers in Ecology and the Environment, 2013, 11, 147-155.	4.0	237
22	Differential sensitivity to regional-scale drought in six central US grasslands. Oecologia, 2015, 177, 949-957.	2.0	236
23	Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biology, 2015, 21, 2624-2633.	9.5	233
24	Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Global Change Biology, 2017, 23, 4376-4385.	9.5	231
25	Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Global Change Biology, 2018, 24, 2818-2827.	9.5	221
26	How ecologists define drought, and why we should do better. Global Change Biology, 2019, 25, 3193-3200.	9.5	219
27	Exotic plant species in a C 4 -dominated grassland: invasibility, disturbance, and community structure. Oecologia, 1999, 120, 605-612.	2.0	204
28	Dominance not richness determines invasibility of tallgrass prairie. Oikos, 2004, 106, 253-262.	2.7	184
29	Coordinated approaches to quantify longâ€ŧerm ecosystem dynamics in response to global change. Global Change Biology, 2011, 17, 843-854.	9.5	165
30	Plant growth and mortality under climatic extremes: An overview. Environmental and Experimental Botany, 2014, 98, 13-19.	4.2	157
31	Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive aboveâ€ground productivity in a tallgrass prairie. Journal of Ecology, 2014, 102, 1649-1660.	4.0	145
32	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	12.8	143
33	Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17867-17873.	7.1	141
34	Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution, 2018, 2, 1925-1932.	7.8	140
35	Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecology Letters, 2017, 20, 1534-1545.	6.4	136
36	Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Global Change Biology, 2017, 23, 1774-1782.	9.5	132

#	Article	IF	CITATIONS
37	Demystifying dominant species. New Phytologist, 2019, 223, 1106-1126.	7.3	125
38	Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1605-1616.	3.0	113
39	Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Science of the Total Environment, 2018, 636, 360-366.	8.0	109
40	Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology and Evolution, 2019, 3, 400-406.	7.8	97
41	Shifts in plant functional composition following longâ€ŧerm drought in grasslands. Journal of Ecology, 2019, 107, 2133-2148.	4.0	85
42	Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160142.	4.0	83
43	Variation in leaf anatomical traits from tropical to coldâ€ŧemperate forests and linkage to ecosystem functions. Functional Ecology, 2018, 32, 10-19.	3.6	82
44	Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming. Oecologia, 2015, 177, 959-969.	2.0	80
45	A comprehensive approach to analyzing community dynamics using rank abundance curves. Ecosphere, 2019, 10, e02881.	2.2	79
46	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 2020, 11, 5375.	12.8	75
47	Generality in ecology: testing North American grassland rules in South African savannas. Frontiers in Ecology and the Environment, 2004, 2, 483-491.	4.0	74
48	Community Response to Extreme Drought (<scp>CRED</scp>): a framework for droughtâ€induced shifts in plant–plant interactions. New Phytologist, 2019, 222, 52-69.	7.3	74
49	Underappreciated problems of low replication in ecological field studies. Ecology, 2016, 97, 2554-2561.	3.2	73
50	Habitat selection by large herbivores in a southern African savanna: the relative roles of bottomâ€up and topâ€down forces. Ecosphere, 2013, 4, 1-19.	2.2	70
51	Plant community response to loss of large herbivores differs between North American and South African savanna grasslands. Ecology, 2014, 95, 808-816.	3.2	70
52	Legacy effects of a regional drought on aboveground net primary production in six central US grasslands. Plant Ecology, 2018, 219, 505-515.	1.6	66
53	Asymmetry in above―and belowground productivity responses to N addition in a semiâ€arid temperate steppe. Global Change Biology, 2019, 25, 2958-2969	9.5	63
54	Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22249-22255.	7.1	63

#	Article	IF	CITATIONS
55	Precipitation amount and event size interact to reduce ecosystem functioning during dry years in a mesic grassland. Global Change Biology, 2020, 26, 658-668.	9.5	62
56	Does ecosystem sensitivity to precipitation at the siteâ€level conform to regionalâ€scale predictions?. Ecology, 2016, 97, 561-568.	3.2	59
57	Ecophysiological responses of two dominant grasses to altered temperature and precipitation regimes. Acta Oecologica, 2009, 35, 400-408.	1.1	58
58	Explaining temporal variation in above-ground productivity in a mesic grassland: the role of climate and flowering. Journal of Ecology, 2011, 99, 1250-1262.	4.0	56
59	Different clades and traits yield similar grassland functional responses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 705-710.	7.1	56
60	Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences, 2018, 15, 3421-3437.	3.3	55
61	Rapid recovery of ecosystem function following extreme drought in a South African savanna grassland. Ecology, 2020, 101, e02983.	3.2	55
62	Plant community response to loss of large herbivores: comparing consequences in a South African and a North American grassland. Biodiversity and Conservation, 2009, 18, 2327-2342.	2.6	54
63	Precipitation–productivity relationships and the duration of precipitation anomalies: An underappreciated dimension of climate change. Global Change Biology, 2021, 27, 1127-1140.	9.5	53
64	Drought timing differentially affects above- and belowground productivity in a mesic grassland. Plant Ecology, 2017, 218, 317-328.	1.6	52
65	Controls of Aboveground Net Primary Production in Mesic Savanna Grasslands: An Inter-Hemispheric Comparison. Ecosystems, 2009, 12, 982-995.	3.4	51
66	Climate–biosphere interactions in a more extreme world. New Phytologist, 2014, 202, 356-359.	7.3	51
67	Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa. New Phytologist, 2014, 203, 1000-1011.	7.3	51
68	Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments. Oecologia, 2015, 177, 935-947.	2.0	48
69	Altered rainfall patterns increase forb abundance and richness in native tallgrass prairie. Scientific Reports, 2016, 6, 20120.	3.3	48
70	A reality check for climate change experiments: Do they reflect the real world?. Ecology, 2018, 99, 2145-2151.	3.2	48
71	Genetic diversity of a dominant C4 grass is altered with increased precipitation variability. Oecologia, 2013, 171, 571-581.	2.0	47
72	Drivers of Variation in Aboveground Net Primary Productivity and Plant Community Composition Differ Across a Broad Precipitation Gradient. Ecosystems, 2016, 19, 521-533.	3.4	47

#	Article	IF	CITATIONS
73	Fire and grazing impacts on silica production and storage in grass dominated ecosystems. Biogeochemistry, 2010, 97, 263-278.	3.5	46
74	Semiarid ecosystem sensitivity to precipitation extremes: weak evidence for vegetation constraints. Ecology, 2019, 100, e02572.	3.2	46
75	Responses to fire differ between <scp>S</scp> outh <scp>A</scp> frican and <scp>N</scp> orth <scp>A</scp> merican grassland communities. Journal of Vegetation Science, 2014, 25, 793-804.	2.2	44
76	Ecological genomics: making the leap from model systems in the lab to native populations in the field. Frontiers in Ecology and the Environment, 2007, 5, 19-24.	4.0	43
77	The immediate and prolonged effects of climate extremes on soil respiration in a mesic grassland. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1034-1044.	3.0	43
78	Nutrient additions cause divergence of tallgrass prairie plant communities resulting in loss of ecosystem stability. Journal of Ecology, 2016, 104, 1478-1487.	4.0	43
79	Species asynchrony stabilises productivity under extreme drought across Northern China grasslands. Journal of Ecology, 2021, 109, 1665-1675.	4.0	42
80	Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland. Plant and Soil, 2016, 408, 475-484.	3.7	41
81	Standardized metrics are key for assessing drought severity. Global Change Biology, 2020, 26, e1-e3.	9.5	41
82	Compound hydroclimatic extremes in a semiâ€arid grassland: Drought, deluge, and the carbon cycle. Global Change Biology, 2022, 28, 2611-2621.	9.5	40
83	Growth Responses of Two Dominant C4 Grass Species to Altered Water Availability. International Journal of Plant Sciences, 2006, 167, 1001-1010.	1.3	38
84	Assessing community and ecosystem sensitivity to climate change – toward a more comparative approach. Journal of Vegetation Science, 2017, 28, 235-237.	2.2	38
85	Comparison of damage to native and exotic tallgrass prairie plants by natural enemies. Plant Ecology, 2008, 198, 197-210.	1.6	36
86	The effect of timing of growing season drought on flowering of a dominant C4 grass. Oecologia, 2016, 181, 391-399.	2.0	36
87	Effects of mycorrhizae on growth and demography of tallgrass prairie forbs. American Journal of Botany, 2001, 88, 1452-1457.	1.7	35
88	Gene expression profiling: opening the black box of plant ecosystem responses to global change. Global Change Biology, 2009, 15, 1201-1213.	9.5	35
89	Effects of extreme drought on plant nutrient uptake and resorption in rhizomatous vs bunchgrass-dominated grasslands. Oecologia, 2018, 188, 633-643.	2.0	35
90	Plant traits and soil fertility mediate productivity losses under extreme drought in C ₃ grasslands. Ecology, 2021, 102, e03465.	3.2	35

#	Article	IF	CITATIONS
91	Functional trait expression of grassland species shift with short- and long-term nutrient additions. Plant Ecology, 2015, 216, 307-318.	1.6	34
92	Is a drought a drought in grasslands? Productivity responses to different types of drought. Oecologia, 2021, 197, 1017-1026.	2.0	34
93	Fire frequency drives habitat selection by a diverse herbivore guild impacting top–down control of plant communities in an African savanna. Oikos, 2016, 125, 1636-1646.	2.7	32
94	Loss of a large grazer impacts savanna grassland plant communities similarly in North America and South Africa. Oecologia, 2014, 175, 293-303.	2.0	31
95	Long term experimental drought alters community plant trait variation, not trait means, across three semiarid grasslands. Plant and Soil, 2019, 442, 343-353.	3.7	31
96	Mass ratio effects underlie ecosystem responses to environmental change. Journal of Ecology, 2020, 108, 855-864.	4.0	31
97	Community stability does not preclude ecosystem sensitivity to chronic resource alteration. Functional Ecology, 2012, 26, 1231-1233.	3.6	30
98	Mechanisms of selection: Phenotypic differences among genotypes explain patterns of selection in a dominant species. Ecology, 2013, 94, 953-965.	3.2	30
99	Rainfall variability has minimal effects on grassland recovery from repeated grazing. Journal of Vegetation Science, 2014, 25, 36-44.	2.2	30
100	Variation in gene expression of <i>Andropogon gerardii</i> in response to altered environmental conditions associated with climate change. Journal of Ecology, 2010, 98, 374-383.	4.0	29
101	Functional differences between dominant grasses drive divergent responses to large herbivore loss in mesic savanna grasslands of North America and South Africa. Journal of Ecology, 2015, 103, 714-724.	4.0	28
102	Invertebrate, not small vertebrate, herbivory interacts with nutrient availability to impact tallgrass prairie community composition and forb biomass. Oikos, 2015, 124, 842-850.	2.7	28
103	Response of plant functional traits of Leymus chinensis to extreme drought in Inner Mongolia grasslands. Plant Ecology, 2019, 220, 141-149.	1.6	28
104	Herbivore size matters for productivity–richness relationships in A frican savannas. Journal of Ecology, 2017, 105, 674-686.	4.0	27
105	Carbon exchange responses of a mesic grassland to an extreme gradient of precipitation. Oecologia, 2019, 189, 565-576.	2.0	27
106	Determinants of community compositional change are equally affected by global change. Ecology Letters, 2021, 24, 1892-1904.	6.4	27
107	Resistance and resilience of a semi-arid grassland to multi-year extreme drought. Ecological Indicators, 2021, 131, 108139.	6.3	27
108	What happens after drought ends: synthesizing terms and definitions. New Phytologist, 2022, 235, 420-431.	7.3	27

#	Article	IF	CITATIONS
109	Measuring genetic diversity in ecological studies. Plant Ecology, 2012, 213, 1105-1115.	1.6	26
110	Prospective evidence for independent nitrogen and phosphorus limitation of grasshopper (Chorthippus curtipennis) growth in a tallgrass prairie. PLoS ONE, 2017, 12, e0177754.	2.5	25
111	Ambient changes exceed treatment effects on plant species abundance in global change experiments. Global Change Biology, 2018, 24, 5668-5679.	9.5	25
112	Guidelines and considerations for designing field experiments simulating precipitation extremes in forest ecosystems. Methods in Ecology and Evolution, 2018, 9, 2310-2325.	5.2	24
113	Terrestrial Precipitation Analysis (<scp>TPA</scp>): A resource for characterizing longâ€ŧerm precipitation regimes and extremes. Methods in Ecology and Evolution, 2016, 7, 1396-1401.	5.2	23
114	Shared Drivers but Divergent Ecological Responses: Insights from Long-Term Experiments in Mesic Savanna Grasslands. BioScience, 2016, 66, 666-682.	4.9	20
115	Lineageâ€based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models. New Phytologist, 2020, 228, 15-23.	7.3	20
116	Experimental drought reâ€ordered assemblages of rootâ€associated fungi across North American grasslands. Journal of Ecology, 2021, 109, 776-792.	4.0	17
117	Intra-specific responses of a dominant C4 grass to altered precipitation patterns. Plant Ecology, 2013, 214, 1377-1389.	1.6	16
118	Relationships between aboveground and belowground trait responses of a dominant plant species to alterations in watertable depth. Land Degradation and Development, 2018, 29, 4015-4024.	3.9	16
119	Climate legacies determine grassland responses to future rainfall regimes. Global Change Biology, 2022, 28, 2639-2656.	9.5	16
120	Invasion of an intact plant community: the role of population versus community level diversity. Oecologia, 2012, 168, 1091-1102.	2.0	15
121	Genetic and functional variation across regional and local scales is associated with climate in a foundational prairie grass. New Phytologist, 2020, 227, 352-364.	7.3	15
122	Temperature patterns of soil carbon: nitrogen: phosphorus stoichiometry along the 400Âmm isohyet in China. Catena, 2021, 203, 105338.	5.0	15
123	Invasibility of a mesic grassland depends on the timeâ€scale of fluctuating resources. Journal of Ecology, 2015, 103, 1538-1546.	4.0	14
124	Linking gene regulation, physiology, and plant biomass allocation in Andropogon gerardii in response to drought. Plant Ecology, 2018, 219, 1-15.	1.6	14
125	Differential responses of grassland community nonstructural carbohydrate to experimental drought along a natural aridity gradient. Science of the Total Environment, 2022, 822, 153589.	8.0	14
126	A TEST FOR COMMUNITY CHANGE USING A NULL MODEL APPROACH. , 2005, 15, 1761-1771.		13

#	Article	lF	CITATIONS
127	Resource availability modulates above―and belowâ€ground competitive interactions between genotypes of a dominant <scp>C</scp> ₄ grass. Functional Ecology, 2014, 28, 1041-1051.	3.6	13
128	Long term prevention of disturbance induces the collapse of a dominant species without altering ecosystem function. Scientific Reports, 2015, 5, 14320.	3.3	13
129	Effects of Feral Horse Herds on Rangeland Plant Communities across a Precipitation Gradient. Western North American Naturalist, 2017, 77, 526-539.	0.4	13
130	Limiting similarity mediates plant community niche hypervolume across a desert-steppe ecotone of Inner Mongolia. Environmental and Experimental Botany, 2018, 153, 320-326.	4.2	13
131	Functional diversity response to geographic and experimental precipitation gradients varies with plant community type. Functional Ecology, 2021, 35, 2119-2132.	3.6	13
132	Correlations between genetic and species diversity: effects of resource quantity and heterogeneity. Journal of Vegetation Science, 2013, 24, 1185-1194.	2.2	12
133	Understanding ecosystems of the future will require more than realistic climate change experiments – A response to Korell et al Clobal Change Biology, 2020, 26, e6-e7.	9.5	12
134	Why Coordinated Distributed Experiments Should Go Global. BioScience, 2021, 71, 918-927.	4.9	12
135	Dominant species control effects of nitrogen addition on ecosystem stability. Science of the Total Environment, 2022, 838, 156060.	8.0	11
136	The effect of genotype richness and genomic dissimilarity of <i>Andropogon gerardii</i> on invasion resistance and productivity. Plant Ecology and Diversity, 2015, 8, 61-71.	2.4	10
137	Changes in species abundances with short-term and long-term nitrogen addition are mediated by stoichiometric homeostasis. Plant and Soil, 2021, 469, 39-48.	3.7	10
138	Effects of Compounded Precipitation Pattern Intensification and Drought Occur Belowground in a Mesic Grassland. Ecosystems, 2022, 25, 1265-1278.	3.4	10
139	Repeated extreme droughts decrease root production, but not the potential for postâ€drought recovery of root production, in a mesic grassland. Oikos, 2023, 2023, .	2.7	10
140	Surrogates Underpin Ecological Understanding and Practice. BioScience, 2018, 68, 640-642.	4.9	8
141	Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems. Oecologia, 2020, 194, 735-744.	2.0	8
142	Direct and indirect relationships between genetic diversity of a dominant grass, community diversity and aboveâ€ground productivity in tallgrass prairie. Journal of Vegetation Science, 2014, 25, 470-480.	2.2	7
143	Gene expression patterns of two dominant tallgrass prairie species differ in response to warming and altered precipitation. Scientific Reports, 2016, 6, 25522.	3.3	7
144	Precipitation and environmental constraints on three aspects of flowering in three dominant tallgrass species. Functional Ecology, 2017, 31, 1894-1902.	3.6	7

#	Article	IF	CITATIONS
145	Weak latitudinal gradients in insect herbivory for dominant rangeland grasses of North America. Ecology and Evolution, 2020, 10, 6385-6394.	1.9	7
146	Codominant grasses differ in gene expression under experimental climate extremes in native tallgrass prairie. PeerJ, 2018, 6, e4394.	2.0	7
147	Gene expression differs in codominant prairie grasses under drought. Molecular Ecology Resources, 2018, 18, 334-346.	4.8	6
148	Resources do not limit compensatory response of a tallgrass prairie plant community to the loss of a dominant species. Journal of Ecology, 2021, 109, 3617-3633.	4.0	6
149	Sediment addition and legume cultivation result in sustainable, longâ€ŧerm increases in ecosystem functions of sandy grasslands. Land Degradation and Development, 2019, 30, 1667-1676.	3.9	5
150	Nonlinear drought plasticity reveals intraspecific diversity in a dominant grass species. Functional Ecology, 2021, 35, 463-474.	3.6	5
151	Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions?. Ecology, 2016, 97, 561.	3.2	5
152	Do tradeâ€offs govern plant species' responses to different global change treatments?. Ecology, 2022, 103, e3626.	3.2	5
153	Richness, not evenness, varies across water availability gradients in grassy biomes on five continents. Oecologia, 2022, 199, 649-659.	2.0	5
154	Thinking inside the Box: Tissue Culture for Plant Propagation in a Key Ecological Species, <i>Andropogon gerardii</i> . American Journal of Plant Sciences, 2018, 09, 1987-2003.	0.8	4
155	Autotrophic respiration is more sensitive to nitrogen addition and grazing than heterotrophic respiration in a meadow steppe. Catena, 2022, 213, 106207.	5.0	4
156	Drought and small-bodied herbivores modify nutrient cycling in the semi-arid shortgrass steppe. Plant Ecology, 2019, 220, 227-239.	1.6	3
157	Divergent interactive impacts on productivity and functional diversity from fluctuated snowfall and continuous nitrogen pollution within Inner Mongolian. Science of the Total Environment, 2020, 704, 135443.	8.0	3
158	Defining codominance in plant communities. New Phytologist, 2021, 230, 1716-1730.	7.3	2
159	Limited legacy effects of extreme multiyear drought on carbon and nitrogen cycling in a mesic grassland. Elementa, 2022, 10, .	3.2	2
160	Herbivores alleviate the negative effects of extreme drought on plant community by enhancing dominant species. Journal of Plant Ecology, 2021, 14, 1030-1036.	2.3	1