
Franck Verrecchia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9536527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Connexin43 and development of primary bone tumors. , 2022, , 285-293.		0
2	Molecular Chaperones in Osteosarcoma: Diagnosis and Therapeutic Issues. Cells, 2021, 10, 754.	4.1	17
3	ICG-001, an Inhibitor of the β-Catenin and cAMP Response Element-Binding Protein Dependent Gene Transcription, Decreases Proliferation but Enhances Migration of Osteosarcoma Cells. Pharmaceuticals, 2021, 14, 421.	3.8	8
4	Overexpression of the Ubiquitin Specific Proteases USP43, USP41, USP27x and USP6 in Osteosarcoma Cell Lines: Inhibition of Osteosarcoma Tumor Growth and Lung Metastasis Development by the USP Antagonist PR619. Cells, 2021, 10, 2268.	4.1	16
5	Ubiquitin-specific proteases as therapeutic targets in paediatric primary bone tumours?. Biochemical Pharmacology, 2021, 194, 114797.	4.4	2
6	Involvement of the TGF-Î ² Signaling Pathway in the Development of YAP-Driven Osteosarcoma Lung Metastasis. Frontiers in Oncology, 2021, 11, 765711.	2.8	7
7	LIM Kinases in Osteosarcoma Development. Cells, 2021, 10, 3542.	4.1	7
8	Sonic Hedgehog Signature in Pediatric Primary Bone Tumors: Effects of the GLI Antagonist GANT61 on Ewing's Sarcoma Tumor Growth. Cancers, 2020, 12, 3438.	3.7	8
9	Antagonistic Functions of Connexin 43 during the Development of Primary or Secondary Bone Tumors. Biomolecules, 2020, 10, 1240.	4.0	7
10	The YAP/TEAD Axis as a New Therapeutic Target in Osteosarcoma: Effect of Verteporfin and CA3 on Primary Tumor Growth. Cancers, 2020, 12, 3847.	3.7	26
11	Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers?. Cancers, 2020, 12, 645.	3.7	21
12	SHH Signaling Pathway Drives Pediatric Bone Sarcoma Progression. Cells, 2020, 9, 536.	4.1	17
13	The Osteosarcoma Microenvironment: A Complex but Targetable Ecosystem. Cells, 2020, 9, 976.	4.1	251
14	New Insights about the Wnt/β-Catenin Signaling Pathway in Primary Bone Tumors and Their Microenvironment: A Promising Target to Develop Therapeutic Strategies?. International Journal of Molecular Sciences, 2019, 20, 3751.	4.1	54
15	Connexin43 intercellular communication drives the early differentiation of human bone marrow stromal cells into osteoblasts. Journal of Cellular Physiology, 2018, 233, 946-957.	4.1	30
16	The Intrinsic and Extrinsic Implications of RANKL/RANK Signaling in Osteosarcoma: From Tumor Initiation to Lung Metastases. Cancers, 2018, 10, 398.	3.7	40
17	Transforming Growth Factor-β Signaling Plays a Pivotal Role in the Interplay Between Osteosarcoma Cells and Their Microenvironment. Frontiers in Oncology, 2018, 8, 133.	2.8	103
18	Implication of molecular vascular smooth muscle cell heterogeneity among arterial beds in arterial calcification. PLoS ONE, 2018, 13, e0191976.	2.5	25

FRANCK VERRECCHIA

#	Article	IF	CITATIONS
19	Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip. European Journal of Cell Biology, 2017, 96, 110-118.	3.6	11
20	Tribute to Frédéric Morinet. Current Research in Translational Medicine, 2017, 65, 5.	1.8	0
21	Bone Morphogenetic Protein 2 and Transforming Growth Factor β1 Inhibit the Expression of the Proinflammatory Cytokine IL-34 in Rheumatoid Arthritis Synovial Fibroblasts. American Journal of Pathology, 2017, 187, 156-162.	3.8	36
22	TGF-Î ² Signaling in Bone Remodeling and Osteosarcoma Progression. Journal of Clinical Medicine, 2016, 5, 96.	2.4	95
23	ΔNp63α Silences a miRNA Program to Aberrantly Initiate a Wound-Healing Program That Promotes TGFβ-Induced Metastasis. Cancer Research, 2016, 76, 3236-3251.	0.9	48
24	Blocking HSP90 Addiction Inhibits Tumor Cell Proliferation, Metastasis Development, and Synergistically Acts with Zoledronic Acid to Delay Osteosarcoma Progression. Clinical Cancer Research, 2016, 22, 2520-2533.	7.0	32
25	Abstract 1911: ΔNp63α promotes TGFβ-induced metastasis by silencing a microRNA network restraining wound healing. , 2016, , .		0
26	Transforming growth factor- \hat{I}^2 increases interleukin-13 synthesis via GATA-3 transcription factor in T-lymphocytes from patients with systemic sclerosis. Arthritis Research and Therapy, 2015, 17, 196.	3.5	22
27	Gap junction in bone remodeling and in primary bone tumors: osteosarcoma and Ewing sarcoma. , 2015, , 83-89.		0
28	Anticancer activity of halofuginone in a preclinical model of osteosarcoma: inhibition of tumor growth and lung metastases. Oncotarget, 2015, 6, 14413-14427.	1.8	38
29	Abstract 1750: Preclinical efficacy of Hsp90 inhibition by using PF-04942847 in osteosarcoma. , 2015, , .		0
30	Overexpression of Smad7 Blocks Primary Tumor Growth and Lung Metastasis Development in Osteosarcoma. Clinical Cancer Research, 2014, 20, 5097-5112.	7.0	88
31	A Disintegrin And Metalloproteinase 12 produced by tumour cells accelerates osteosarcoma tumour progression and associated osteolysis. European Journal of Cancer, 2013, 49, 2253-2263.	2.8	15
32	Loss of connexin43 expression in Ewing's sarcoma cells favors the development of the primary tumor and the associated bone osteolysis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 553-564.	3.8	18
33	Expression of transforming growth factor β receptor II in mesenchymal stem cells from systemic sclerosis patients. BMJ Open, 2013, 3, e001890.	1.9	34
34	lgG from patients with pulmonary arterial hypertension and/or systemic sclerosis binds to vascular smooth muscle cells and induces cell contraction. Annals of the Rheumatic Diseases, 2012, 71, 596-605.	0.9	41
35	Relationship between cytokine profiles and clinical outcomes in patients with systemic sclerosis. Autoimmunity Reviews, 2010, 10, 65-73.	5.8	92
36	GLI2-Mediated Melanoma Invasion and Metastasis. Journal of the National Cancer Institute, 2010, 102, 1148-1159.	6.3	149

FRANCK VERRECCHIA

#	Article	IF	CITATIONS
37	Evidence of an antifibrotic effect of immunosuppressive drugs: applications in the treatment of systemic sclerosis. Expert Review of Clinical Immunology, 2009, 5, 35-43.	3.0	2
38	Cloning of the Human GLI2 Promoter. Journal of Biological Chemistry, 2009, 284, 31523-31531.	3.4	151
39	câ€Fos accelerates hepatocyte conversion to a fibroblastoid phenotype through ERKâ€mediated upregulation of paxillin‣erine178 phosphorylation. Molecular Carcinogenesis, 2009, 48, 532-544.	2.7	5
40	TNFâ€Î± represses connexin43 expression in hacat keratinocytes via activation of JNK signaling. Journal of Cellular Physiology, 2008, 216, 438-444.	4.1	23
41	TGFâ€Î² induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways. Journal of Cellular Physiology, 2008, 217, 759-768.	4.1	44
42	Extracellular matrix metalloproteinase inducer/CD147 promotes myofibroblast differentiation by inducing αâ€smooth muscle actin expression and collagen gel contraction: implications in tissue remodeling. FASEB Journal, 2008, 22, 1144-1154.	0.5	83
43	TGF- \hat{I}^2 and Stromal Influences Over Local Tumor Invasion. , 2008, , 537-551.		Ο
44	Induction of Sonic Hedgehog Mediators by Transforming Growth Factor-β: Smad3-Dependent Activation of <i>Gli2</i> and <i>Gli1</i> Expression <i>In vitro</i> and <i>In vivo</i> . Cancer Research, 2007, 67, 6981-6986.	0.9	359
45	Autologous HSCT: toward scleroderma treatment. Blood, 2007, 110, 1088-1089.	1.4	1
46	In Vitro Evidence for a Direct Antifibrotic Role of the Immunosuppressive Drug Mycophenolate Mofetil. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 583-589.	2.5	108
47	Transforming growth factor-Î ² and fibrosis. World Journal of Gastroenterology, 2007, 13, 3056.	3.3	438
48	Involvement of ERK signaling in halofuginone-driven inhibition of fibroblast ability to contract collagen lattices. European Journal of Pharmacology, 2007, 573, 65-69.	3.5	13
49	Transforming growth factor-β signaling through the Smad proteins: Role in systemic sclerosis. Autoimmunity Reviews, 2006, 5, 563-569.	5.8	117
50	Modulation of Collagen and MMP-1 Gene Expression in Fibroblasts by the Immunosuppressive Drug Rapamycin. Journal of Biological Chemistry, 2006, 281, 33045-33052.	3.4	67
51	The steroid receptor co-activator-1 (SRC-1) potentiates TGF-β/Smad signaling: role of p300/CBP. Oncogene, 2005, 24, 1936-1945.	5.9	22
52	TGF-β and TNF-α: antagonistic cytokines controlling type I collagen gene expression. Cellular Signalling, 2004, 16, 873-880.	3.6	164
53	Modulation of Gene Expression Induced in Human Epidermis by Environmental Stress In Vivo. Journal of Investigative Dermatology, 2003, 121, 1447-1458.	0.7	90
54	Retinoic acid receptors interfere with the TGF-β/Smad signaling pathway in a ligand-specific manner. Oncogene, 2003, 22, 8212-8220.	5.9	75

FRANCK VERRECCHIA

#	Article	IF	CITATIONS
55	Disruption of Basal JNK Activity Differentially Affects Key Fibroblast Functions Important for Wound Healing. Journal of Biological Chemistry, 2003, 278, 24624-24628.	3.4	103
56	A Central Role for the JNK Pathway in Mediating the Antagonistic Activity of Pro-inflammatory Cytokines against Transforming Growth Factor-I²-driven SMAD3/4-specific Gene Expression. Journal of Biological Chemistry, 2003, 278, 1585-1593.	3.4	84
57	5-Fluorouracil Blocks Transforming Growth Factor-β–Induced α2Type I Collagen Gene (COL1A2) Expression in Human Fibroblasts via c-Jun NH2-Terminal Kinase/Activator Protein-1 Activation. Molecular Pharmacology, 2003, 64, 707-713.	2.3	99
58	Control of connective tissue gene expression by TGFβ: Role of smad proteins in fibrosis. Current Rheumatology Reports, 2002, 4, 143-149.	4.7	81
59	Transforming Growth Factor-Î ² Signaling Through the Smad Pathway: Role in Extracellular Matrix Gene Expression and Regulation. Journal of Investigative Dermatology, 2002, 118, 211-215.	0.7	550
60	Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-β/Smad signaling. Oncogene, 2002, 21, 4879-4884.	5.9	199
61	Distinct involvement of the Junâ€Nâ€terminal kinase and NFâ€ÎºB pathways in the repression of the human <i>COL1A2</i> gene by TNFâ€Î±. EMBO Reports, 2002, 3, 1069-1074.	4.5	63
62	Blocking Sp1 Transcription Factor Broadly Inhibits Extracellular Matrix Gene Expression In Vitro and In Vivo: Implications for the Treatment of Tissue Fibrosis. Journal of Investigative Dermatology, 2001, 116, 755-763.	0.7	119
63	Induction of the AP-1 members c-Jun and JunB by TGF-β/Smad suppresses early Smad-driven gene activation. Oncogene, 2001, 20, 2205-2211.	5.9	94
64	Smad3/AP-1 interactions control transcriptional responses to TGF-Î ² in a promoter-specific manner. Oncogene, 2001, 20, 3332-3340.	5.9	175
65	Identification of Novel TGF-β/Smad Gene Targets in Dermal Fibroblasts using a Combined cDNA Microarray/Promoter Transactivation Approach. Journal of Biological Chemistry, 2001, 276, 17058-17062.	3.4	575
66	Tumor Necrosis Factor-α Inhibits Transforming Growth Factor-β /Smad Signaling in Human Dermal Fibroblasts via AP-1 Activation. Journal of Biological Chemistry, 2000, 275, 30226-30231.	3.4	155
67	ATP counteracts the rundown of gap junctional channels of rat ventricular myocytes by promoting protein phosphorylation. Journal of Physiology, 1999, 516, 447-459.	2.9	47
68	Reversible inhibition of gap junctional communication by tamoxifen in cultured cardiac myocytes. Pflugers Archiv European Journal of Physiology, 1997, 434, 113-116.	2.8	26