Alexander McQuillan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/953645/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infrared Spectroscopy of the TiO2/Aqueous Solution Interface. Langmuir, 1999, 15, 2402-2408.	3.5	229
2	New Sol-Gel Attenuated Total Reflection Infrared Spectroscopic Method for Analysis of Adsorption at Metal Oxide Surfaces in Aqueous Solutions. Chelation of TiO2, ZrO2, and Al2O3 Surfaces by Catechol, 8-Quinolinol, and Acetylacetone. Langmuir, 1995, 11, 4193-4195.	3.5	184
3	An Infrared Spectroscopic Study of Carbonate Adsorption to Zirconium Dioxide Solâ^'Gel Films from Aqueous Solutions. Langmuir, 1997, 13, 3392-3396.	3.5	115
4	An In Situ Infrared Spectroscopic Study of the Adsorption of Lysine to TiO2from an Aqueous Solution. Langmuir, 1998, 14, 6479-6484.	3.5	114
5	Surficial Siloxane-to-Silanol Interconversion during Room-Temperature Hydration/Dehydration of Amorphous Silica Films Observed by ATR-IR and TIR-Raman Spectroscopy. Langmuir, 2016, 32, 1568-1576.	3.5	101
6	Characterisation and activity of sol–gel-prepared TiO2 photocatalysts modified with Ca, Sr or Ba ion additives. Journal of Materials Chemistry, 2000, 10, 2358-2363.	6.7	99
7	Influence of Adsorbed Water on Phonon and UV-Induced IR Absorptions of TiO2Photocatalytic Particle Films. Journal of Physical Chemistry B, 2004, 108, 19373-19379.	2.6	84
8	Adsorption/Desorption Kinetics from ATR-IR Spectroscopy. Aqueous Oxalic Acid on Anatase TiO ₂ . Langmuir, 2009, 25, 3538-3548.	3.5	66
9	Monitoring Hydrous Metal Oxide Surface Charge and Adsorption by STIRS. Langmuir, 1997, 13, 2614-2616.	3.5	65
10	UV-Visible Spectrooelectrochemistry of the Reduction Products of Anthraquinone in Dimethylformamide Solutions: An Advanced Undergraduate Experiment. Journal of Chemical Education, 1997, 74, 1200.	2.3	59
11	In Situ Infrared Spectroscopy of Glyoxylic Acid Adsorption and Photocatalysis on TiO2 in Aqueous Solution. Journal of Physical Chemistry B, 1999, 103, 10562-10565.	2.6	58
12	In Situ ATR-FTIR Spectroscopic Study of Adsorption of Perchlorate, Sulfate, and Thiosulfate Ions onto Chromium(III) Oxide Hydroxide Thin Films. Langmuir, 1999, 15, 4595-4602.	3.5	56
13	The origin of intense Raman spectra from pyridine at silver electrode surfaces: The role of surface carbon. Journal of Raman Spectroscopy, 1980, 9, 273-278.	2.5	44
14	Infrared Spectroscopic Study of Calcium and Phosphate Ion Coadsorption and of Brushite Crystallization on TiO2. Langmuir, 2002, 18, 5019-5022.	3.5	42
15	Adsorbed Thiosulfate Intermediate of Cadmium Sulfide Aqueous Photocorrosion Detected and Characterized by in Situ Infrared Spectroscopy. Journal of Physical Chemistry B, 1998, 102, 4110-4113.	2.6	41
16	In Situ Infrared Spectroscopic Studies of Adsorption of Lactic Acid and Related Compounds on the TiO2and CdS Semiconductor Photocatalyst Surfaces from Aqueous Solutions. Chemistry Letters, 1998, 27, 849-850.	1.3	32
17	Influence of Formate Adsorption and Protons on Shallow Trap Infrared Absorption (STIRA) of Anatase TiO ₂ During Photocatalysis. Journal of Physical Chemistry C, 2013, 117, 23645-23656.	3.1	31
18	<i>In Situ</i> ATR FTIR Study of Dextrin Adsorption on Anatase TiO ₂ . Langmuir, 2012, 28, 4233-4240.	3.5	29

#	Article	IF	CITATIONS
19	Shallow Electron Trap, Interfacial Water, and Outer-Sphere Adsorbed Oxalate IR Absorptions Correlate during UV Irradiation of Photocatalytic TiO ₂ Films in Aqueous Solution. Journal of Physical Chemistry C, 2011, 115, 902-907.	3.1	28
20	Structure and Conformation in Mixtures of Methyl-Terminated Poly(ethylene oxide) and Water. Principal Component Analysis and Band Fitting of Infrared Absorptions. Journal of Physical Chemistry B, 2009, 113, 14229-14238.	2.6	25
21	IR Spectroscopic Behavior of Polaronic Trapped Electrons in TiO ₂ under Aqueous Photocatalytic Conditions. Journal of Physical Chemistry C, 2014, 118, 13680-13692.	3.1	25
22	<i>In situ</i> infrared spectroscopic investigation of <i>Perna canaliculus</i> mussel larvae primary settlement. Biofouling, 2008, 24, 405-413.	2.2	20
23	Supramolecular Activation ofpara-Benzoquinone. Angewandte Chemie International Edition in English, 1995, 33, 2489-2491.	4.4	17
24	Adhesive Secretions of Live Mussels Observed in Situ by Attenuated Total Reflection—Infrared Spectroscopy, 2007, 61, 55-59.	2.2	16
25	Preparation and characterization of poly(styrene-alt-maleic acid)-b-polystyrene block copolymer self-assembled nanoparticles. Colloid and Polymer Science, 2008, 286, 1605-1612.	2.1	15
26	Histomorphometric and histologic evaluation of titanium–zirconium (aTiZr) implants with anodized surfaces. Journal of Materials Science: Materials in Medicine, 2016, 27, 86.	3.6	11
27	In SituSpectroelectrochemical Studies of the Decomposition of Hydroquinones on Platinum Electrodes in Dichloromethane Solutions. Journal of Physical Chemistry B, 1997, 101, 7443-7447.	2.6	10
28	Microscopic and infrared spectroscopic comparison of the underwater adhesives produced by germlings of the brown seaweed species <i>Durvillaea antarctica</i> and <i>Hormosira banksii</i> Journal of the Royal Society Interface, 2016, 13, 20151083.	3.4	10
29	Scanning Electron Microscopy and Energy Dispersive X-Ray Microanalysis of <i>Perna canaliculus</i> Mussel Larvae Adhesive Secretion. Journal of Adhesion, 2009, 85, 78-96.	3.0	9
30	ATR FTIR Study of the Interaction of TiO ₂ Nanoparticle Films with β-Lactoglobulin and Bile Salts. Langmuir, 2021, 37, 13278-13290.	3.5	7
31	Supramolekulare Aktivierung von <i>para</i> â€Benzochinon. Angewandte Chemie, 1994, 106, 2584-2587.	2.0	6
32	Adsorption of Carboxymethyl Cellulose onto Titania Particle Films Studied with in Situ IR Spectroscopic Analysis. Langmuir, 2019, 35, 10734-10743.	3.5	5
33	Glossary of methods and terms used in surface chemical analysis (IUPAC Recommendations 2020). Pure and Applied Chemistry, 2020, 92, 1781-1860.	1.9	5
34	Adsorption of a Polyethoxylated Surfactant from Aqueous Solution to Silica Nanoparticle Films Studied with In Situ Attenuated Total Reflection Infrared Spectroscopy and Colloid Probe Atomic Force Microscopy. Langmuir, 2018, 34, 13481-13490.	3.5	3
35	Experiments on adsorption at hydrous metal oxide surfaces using attenuated total reflection infrared spectroscopy (ATRIRS) (IUPAC Technical Report). Pure and Applied Chemistry, 2019, 91, 2043-2061.	1.9	2
36	Infrared Spectroelectrochemistry of Nitrite in Absolute Methanol. Journal of Physical Chemistry C, 2010, 114, 17604-17609.	3.1	1

#	Article	IF	CITATIONS
37	ConfChem Conference on A Virtual Colloquium to Sustain and Celebrate IYC 2011 Initiatives in Global Chemical Education: Chemistry Cartoon Competition from IUPAC Physical Chemistry Division. Journal of Chemical Education, 2013, 90, 1557-1558.	2.3	1
38	Competition-Driven Ligand Exchange for Functionalizing Nanoparticles and Nanoparticle Clusters without Colloidal Destabilization. ACS Applied Nano Materials, 2019, 2, 2230-2240.	5.0	1