Christine Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9534422/publications.pdf

Version: 2024-02-01

108 papers	10,143 citations		50 h-index	3	96 g-index
114 all docs	114 docs citation	S	114 times ranked		11183 citing authors

#	Article	IF	CITATIONS
1	Chimeric Antigen Receptor (CAR) T Cell Therapy for Glioblastoma. NeuroMolecular Medicine, 2022, 24, 35-40.	3.4	6
2	Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma. Neuro-Oncology, 2022, 24, 1318-1330.	1.2	32
3	Dose-dependent thresholds of dexamethasone destabilize CAR T-cell treatment efficacy. PLoS Computational Biology, 2022, 18, e1009504.	3.2	8
4	Preclinical Evaluation of CAR T Cell Function: In Vitro and In Vivo Models. International Journal of Molecular Sciences, 2022, 23, 3154.	4.1	15
5	3D-organoid culture supports differentiation of human CAR+ iPSCs into highly functional CAR TÂcells. Cell Stem Cell, 2022, 29, 515-527.e8.	11.1	57
6	Loss of SIRT1 inhibits hematopoietic stem cell aging and age-dependent mixed phenotype acute leukemia. Communications Biology, 2022, 5, 396.	4.4	7
7	Spatial organization of heterogeneous immunotherapy target antigen expression in high-grade glioma. Neoplasia, 2022, 30, 100801.	5.3	2
8	The future of cancer immunotherapy for brain tumors: a collaborative workshop. Journal of Translational Medicine, 2022, 20, .	4.4	7
9	Spatiotemporal analysis of glioma heterogeneity reveals COL1A1 as an actionable target to disrupt tumor progression. Nature Communications, 2022, 13, .	12.8	29
10	Abstract CT541A: Oncolytic viral reshaping of the tumor microenvironment to promote CAR T cell therapy for glioblastoma. Cancer Research, 2022, 82, CT541A-CT541A.	0.9	1
11	Antibody-based redirection of universal Fabrack-CAR T cells selectively kill antigen bearing tumor cells., 2022, 10, e003752.		4
12	A metabolic switch to memory CAR T cells: Implications for cancer treatment. Cancer Letters, 2021, 500, 107-118.	7.2	21
13	CRISPR Screening of CAR T Cells and Cancer Stem Cells Reveals Critical Dependencies for Cell-Based Therapies. Cancer Discovery, 2021, 11, 1192-1211.	9.4	78
14	The Cerebroventricular Environment Modifies CAR T Cells for Potent Activity against Both Central Nervous System and Systemic Lymphoma. Cancer Immunology Research, 2021, 9, 75-88.	3.4	24
15	Tumor regression and immunity in combination therapy with anti-CEA chimeric antigen receptor T cells and anti-CEA-IL2 immunocytokine. Oncolmmunology, 2021, 10, 1899469.	4.6	28
16	Chimeric Antigen Receptor T-Cell Therapy: Updates in Glioblastoma Treatment. Neurosurgery, 2021, 88, 1056-1064.	1.1	14
17	Abstract PO083: Treatment of CEA-positive solid tumors with anti-CEA chimeric antigen receptor T-cells in CEA transgenic mice. Cancer Immunology Research, 2021, 9, PO083-PO083.	3.4	2
18	Harnessing and Enhancing Macrophage Phagocytosis for Cancer Therapy. Frontiers in Immunology, 2021, 12, 635173.	4.8	41

#	Article	IF	CITATIONS
19	IFNγ Is Critical for CAR T Cell–Mediated Myeloid Activation and Induction of Endogenous Immunity. Cancer Discovery, 2021, 11, 2248-2265.	9.4	86
20	Deep immune profiling reveals targetable mechanisms of immune evasion in immune checkpoint inhibitor-refractory glioblastoma., 2021, 9, e002181.		42
21	Mitochondria as Playmakers of CAR T-cell Fate and Longevity. Cancer Immunology Research, 2021, 9, 856-861.	3.4	12
22	CD19-directed CAR T-cell therapy for treatment of primary CNS lymphoma. Blood Advances, 2021, 5, 4059-4063.	5.2	62
23	Unique challenges for glioblastoma immunotherapyâ€"discussions across neuro-oncology and non-neuro-oncology experts in cancer immunology. Meeting Report from the 2019 SNO Immuno-Oncology Think Tank. Neuro-Oncology, 2021, 23, 356-375.	1.2	59
24	Delivery strategies for cell-based therapies in the brain: overcoming multiple barriers. Drug Delivery and Translational Research, 2021, 11, 2448-2467.	5.8	8
25	Vitamin C, From Supplement to Treatment: A Re-Emerging Adjunct for Cancer Immunotherapy?. Frontiers in Immunology, 2021, 12, 765906.	4.8	12
26	EXTH-10. EXPLORATION OF A NOVEL TOXIN-INCORPORATING CAR T CELL: HOW DOES CHLOROTOXIN RECOGNIZE GLIOBLASTOMA CELLS?. Neuro-Oncology, 2021, 23, vi165-vi165.	1.2	0
27	CTIM-29. CLINICAL EVALUATION OF CHLOROTOXIN-DIRECTED CAR T CELLS FOR PATIENTS WITH RECURRENT GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi57-vi57.	1.2	0
28	Repeatability of tumor perfusion kinetics from dynamic contrast-enhanced MRI in glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab174.	0.7	3
29	Integrin $\hat{l}\pm 6$ signaling induces STAT3-TET3-mediated hydroxymethylation of genes critical for maintenance of glioma stem cells. Oncogene, 2020, 39, 2156-2169.	5.9	23
30	Systemic Anti–PD-1 Immunotherapy Results in PD-1 Blockade on T Cells in the Cerebrospinal Fluid. JAMA Oncology, 2020, 6, 1947.	7.1	28
31	Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nature Communications, 2020, 11, 2283.	12.8	130
32	Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Science Translational Medicine, 2020, 12, .	12.4	150
33	Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data. Journal of the Royal Society Interface, 2020, 17, 20190734.	3.4	58
34	Chimeric antigen receptor signaling: Functional consequences and design implications. Science Advances, 2020, 6, eaaz3223.	10.3	81
35	CAR T cells for brain tumors: Lessons learned and road ahead. Immunological Reviews, 2019, 290, 60-84.	6.0	151
36	IL15 Enhances CAR-T Cell Antitumor Activity by Reducing mTORC1 Activity and Preserving Their Stem Cell Memory Phenotype. Cancer Immunology Research, 2019, 7, 759-772.	3.4	235

3

#	Article	IF	CITATIONS
37	In Vitro Tumor Cell Rechallenge For Predictive Evaluation of Chimeric Antigen Receptor T Cell Antitumor Function. Journal of Visualized Experiments, 2019, , .	0.3	19
38	CAR T cell therapy: inroads to response and resistance. Nature Reviews Immunology, 2019, 19, 73-74.	22.7	148
39	CD19-Targeting CAR-T Cell Therapy in CNS Lymphoma. Blood, 2019, 134, 4075-4075.	1.4	10
40	Regional Delivery of Chimeric Antigen Receptor–Engineered T Cells Effectively Targets HER2+ Breast Cancer Metastasis to the Brain. Clinical Cancer Research, 2018, 24, 95-105.	7.0	220
41	Lenalidomide Enhances the Function of CS1 Chimeric Antigen Receptor–Redirected T Cells Against Multiple Myeloma. Clinical Cancer Research, 2018, 24, 106-119.	7.0	136
42	Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. Oncolmmunology, 2018, 7, e1380764.	4.6	111
43	Optimization of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma. Molecular Therapy, 2018, 26, 31-44.	8.2	217
44	Chimeric Antigen Receptor T-Cell Therapy. Journal of the National Comprehensive Cancer Network: JNCCN, 2018, 16, 1092-1106.	4.9	15
45	Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight, 2018, 3, .	5.0	150
46	PET of Adoptively Transferred Chimeric Antigen Receptor T Cells with ⁸⁹ Zr-Oxine. Journal of Nuclear Medicine, 2018, 59, 1531-1537.	5.0	111
47	CD19-CAR Therapy Using Naive/Memory or Central Memory T Cells Integrated into the Autologous Stem Cell Transplant Regimen for Patients with B-NHL. Blood, 2018, 132, 610-610.	1.4	9
48	Adult Patients with ALL Treated with CD62L+ T Na \tilde{A} -ve/Memory-Enriched T Cells Expressing a CD19-CAR Mediate Potent Antitumor Activity with a Low Toxicity Profile. Blood, 2018, 132, 4016-4016.	1.4	11
49	Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Science Translational Medicine, 2017, 9, .	12.4	263
50	Human Neural Stem Cell Biodistribution and Predicted Tumor Coverage by a Diffusible Therapeutic in a Mouse Glioma Model. Stem Cells Translational Medicine, 2017, 6, 1522-1532.	3.3	24
51	Chimeric antigen receptor T-cell therapy for glioblastoma. Translational Research, 2017, 187, 93-102.	5.0	27
52	Targeting Alpha-Fetoprotein (AFP)–MHC Complex with CAR T-Cell Therapy for Liver Cancer. Clinical Cancer Research, 2017, 23, 478-488.	7.0	158
53	Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications. Frontiers in Immunology, 2017, 8, 1850.	4.8	161
54	IMMU-08. THERAPEUTIC POTENTIAL OF CHLOROTOXIN-REDIRECTED CAR-T CELLS AGAINST HETEROGENEOUS GLIOBLASTOMAS. Neuro-Oncology, 2017, 19, vi114-vi114.	1.2	2

#	Article	IF	CITATIONS
55	L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice. PLoS ONE, 2016, 11, e0146885.	2.5	34
56	Next frontiers in CAR T-cell therapy. Molecular Therapy - Oncolytics, 2016, 3, 16028.	4.4	20
57	Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. New England Journal of Medicine, 2016, 375, 2561-2569.	27.0	1,326
58	Phase 1 studies of central memory–derived CD19 CAR T–cell therapy following autologous HSCT in patients with B-cell NHL. Blood, 2016, 127, 2980-2990.	1.4	264
59	Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis. Nature Communications, 2016, 7, 10637.	12.8	67
60	Comparison of $na\tilde{A}$ -ve and central memory derived CD8 $<$ sup $>+sup>effector cell engraftment fitness and function following adoptive transfer. Oncolmmunology, 2016, 5, e1072671.$	4.6	25
61	New Therapeutic Approach for Central Nervous System Lymphoma By Intracerebroventricular Delivery of CD19CAR T Cells. Blood, 2016, 128, 2161-2161.	1.4	0
62	Smart CARs engineered for cancer immunotherapy. Current Opinion in Oncology, 2015, 27, 466-474.	2.4	63
63	Bioactivity and Safety of IL13Rα2-Redirected Chimeric Antigen Receptor CD8+ T Cells in Patients with Recurrent Glioblastoma. Clinical Cancer Research, 2015, 21, 4062-4072.	7.0	573
64	CMVpp65 Vaccine Enhances the Antitumor Efficacy of Adoptively Transferred CD19-Redirected CMV-Specific T Cells. Clinical Cancer Research, 2015, 21, 2993-3002.	7.0	52
65	Chimeric Antigen Receptors With Mutated IgG4 Fc Spacer Avoid Fc Receptor Binding and Improve T Cell Persistence and Antitumor Efficacy. Molecular Therapy, 2015, 23, 757-768.	8.2	169
66	Phase I Studies of Cellular Immunotherapy Using Central Memory Derived-CD19-Specific T Cells Following Autologous Stem Cell Transplantation for Patients with High-Risk Intermediate Grade B-Lineage Non-Hodgkin Lymphoma. Blood, 2015, 126, 930-930.	1.4	2
67	Ex Vivo AKT Inhibition Promotes the Generation of Potent CD19CAR T Cells for Adoptive Immunotherapy. Blood, 2015, 126, 3086-3086.	1.4	0
68	Diverse Solid Tumors Expressing a Restricted Epitope of L1-CAM Can Be Targeted by Chimeric Antigen Receptor Redirected T Lymphocytes. Journal of Immunotherapy, 2014, 37, 93-104.	2.4	50
69	Targeting JAK1/STAT3 Signaling Suppresses Tumor Progression and Metastasis in a Peritoneal Model of Human Ovarian Cancer. Molecular Cancer Therapeutics, 2014, 13, 3037-3048.	4.1	71
70	Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro-Oncology, 2014, 16, 1304-1312.	1.2	131
71	TLR9 Is Critical for Glioma Stem Cell Maintenance and Targeting. Cancer Research, 2014, 74, 5218-5228.	0.9	60
72	CS-1 Re-Directed Central Memory T Cell Therapy for Multiple Myeloma. Blood, 2014, 124, 1114-1114.	1.4	1

#	Article	IF	Citations
73	A Novel Berbamine Derivative Inhibits Cell Viability and Induces Apoptosis in Cancer Stem-Like Cells of Human Glioblastoma, via Up-Regulation of miRNA-4284 and JNK/AP-1 Signaling. PLoS ONE, 2014, 9, e94443.	2.5	57
74	Cytokine Induction of VCAM-1 but Not IL13RÎ ± 2 on Glioma Cells: A Tale of Two Antibodies. PLoS ONE, 2014, 9, e95123.	2.5	1
75	Neural Stem Cell–Mediated Enzyme/Prodrug Therapy for Glioma: Preclinical Studies. Science Translational Medicine, 2013, 5, 184ra59.	12.4	194
76	Efficient selection of genetically modified human T cells using methotrexate-resistant human dihydrofolate reductase. Gene Therapy, 2013, 20, 853-860.	4.5	22
77	Chimeric \hat{I}^3 c cytokine receptors confer cytokine independent engraftment of human T lymphocytes. Molecular Immunology, 2013, 56, 1-11.	2.2	12
78	Neural Stem Cell-Mediated Delivery of Irinotecan-Activating Carboxylesterases to Glioma: Implications for Clinical Use. Stem Cells Translational Medicine, 2013, 2, 983-992.	3.3	58
79	Magnetic Resonance Imaging Tracking of Ferumoxytol-Labeled Human Neural Stem Cells: Studies Leading to Clinical Use. Stem Cells Translational Medicine, 2013, 2, 766-775.	3.3	88
80	Acute myeloid leukemia therapeutics. Oncolmmunology, 2013, 2, e27214.	4.6	9
81	T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood, 2013, 122, 3138-3148.	1.4	322
82	Engineering Human T Cells for Resistance to Methotrexate and Mycophenolate Mofetil as an In Vivo Cell Selection Strategy. PLoS ONE, 2013, 8, e65519.	2.5	25
83	Glioma IL13Rα2 Is Associated with Mesenchymal Signature Gene Expression and Poor Patient Prognosis. PLoS ONE, 2013, 8, e77769.	2.5	126
84	Stem-like Tumor-Initiating Cells Isolated from IL13Rα2 Expressing Gliomas Are Targeted and Killed by IL13-Zetakine–Redirected T Cells. Clinical Cancer Research, 2012, 18, 2199-2209.	7.0	191
85	Phenotypic and Functional Attributes of Lentivirus-modified CD19-specific Human CD8+ Central Memory T Cells Manufactured at Clinical Scale. Journal of Immunotherapy, 2012, 35, 689-701.	2.4	128
86	Contact and Encirclement of Glioma Cells In Vitro Is an Intrinsic Behavior of a Clonal Human Neural Stem Cell Line. PLoS ONE, 2012, 7, e51859.	2.5	3
87	Tumor PD-L1 co-stimulates primary human CD8+ cytotoxic T cells modified to express a PD1:CD28 chimeric receptor. Molecular Immunology, 2012, 51, 263-272.	2.2	158
88	CD123-Specific Chimeric Antigen Receptor Redirected T Cells Exhibit Potent Cytolytic Activity and Multiple Effector Functions Against Acute Myeloid Leukemia without Altering Normal Hematopoietic Colony Formation in Vitro. Blood, 2012, 120, 950-950.	1.4	1
89	Cytotoxic T Lymphocyte Trafficking and Survival in an Augmented Fibrin Matrix Carrier. PLoS ONE, 2012, 7, e34652.	2.5	6
90	Genome-Wide Profiling Identified a Set of miRNAs that Are Differentially Expressed in Glioblastoma Stem Cells and Normal Neural Stem Cells. PLoS ONE, 2012, 7, e36248.	2.5	100

#	Article	IF	Citations
91	Induction of Anti-Glioma Natural Killer Cell Response following Multiple Low-Dose Intracerebral CpG Therapy. Clinical Cancer Research, 2010, 16, 3399-3408.	7.0	63
92	Sorafenib Induces Growth Arrest and Apoptosis of Human Glioblastoma Cells through the Dephosphorylation of Signal Transducers and Activators of Transcription 3. Molecular Cancer Therapeutics, 2010, 9, 953-962.	4.1	110
93	Recognition and Killing of Brain Tumor Stem-Like Initiating Cells by CD8+ Cytolytic T Cells. Cancer Research, 2009, 69, 8886-8893.	0.9	118
94	Tumor-Derived Chemokine MCP-1/CCL2 Is Sufficient for Mediating Tumor Tropism of Adoptively Transferred T Cells. Journal of Immunology, 2007, 179, 3332-3341.	0.8	133
95	Medulloblastomas Expressing IL13Rα2 are Targets for IL13-zetakine+ Cytolytic T Cells. Journal of Pediatric Hematology/Oncology, 2007, 29, 669-677.	0.6	37
96	Conversion of a tumor-binding peptide identified by phage display to a functional chimeric T cell antigen receptor. Cancer Gene Therapy, 2007, 14, 91-97.	4.6	52
97	Biophotonic cytotoxicity assay for high-throughput screening of cytolytic killing. Journal of Immunological Methods, 2005, 297, 39-52.	1.4	57
98	A quantitative high-throughput chemotaxis assay using bioluminescent reporter cells. Journal of Immunological Methods, 2005, 302, 78-89.	1.4	12
99	T-cell genetic modification for re-directed tumor recognition. Cancer Chemotherapy and Biological Response Modifiers, 2005, 22, 293-324.	0.5	15
100	Specific Recognition and Killing of Glioblastoma Multiforme by Interleukin 13-Zetakine Redirected Cytolytic T Cells. Cancer Research, 2004, 64, 9160-9166.	0.9	342
101	Transcription Activator Interactions with Multiple SWI/SNF Subunits. Molecular and Cellular Biology, 2002, 22, 1615-1625.	2.3	160
102	Recruitment of HAT Complexes by Direct Activator Interactions with the ATM-Related Tra1 Subunit. Science, 2001, 292, 2333-2337.	12.6	334
103	The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1. Genes and Development, 2001, 15, 3155-3168.	5.9	127
104	The many HATs of transcription coactivators. Trends in Biochemical Sciences, 2000, 25, 15-19.	7.5	325
105	Histone Acetyltransferase Complexes and Their Link to Transcription. Critical Reviews in Eukaryotic Gene Expression, 1999, 9, 231-243.	0.9	44
106	Poly(A) Tail Length Control in <i>Saccharomyces cerevisiae</i> Occurs by Message-Specific Deadenylation. Molecular and Cellular Biology, 1998, 18, 6548-6559.	2.3	197
107	Capped mRNA Degradation Intermediates Accumulate in the Yeast <i>spb8-2</i> Mutant. Molecular and Cellular Biology, 1998, 18, 5062-5072.	2.3	142
108	<i>PAN3</i> Encodes a Subunit of the Pab1p-Dependent Poly(A) Nuclease in <i>Saccharomyces cerevisiae</i> Molecular and Cellular Biology, 1996, 16, 5744-5753.	2.3	149