Joseph D Romano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9534185/publications.pdf

Version: 2024-02-01

20 papers

1,348 citations

623734 14 h-index 19 g-index

20 all docs

20 docs citations

times ranked

20

1353 citing authors

#	Article	IF	CITATIONS
1	Comparison of maximum-likelihood mapping methods for gravitational-wave backgrounds. Physical Review D, 2022, 105, .	4.7	7
2	Frequentist versus Bayesian analyses: Cross-correlation as an approximate sufficient statistic for LIGO-Virgo stochastic background searches. Physical Review D, 2021, 103, .	4.7	13
3	Common-spectrum process versus cross-correlation for gravitational-wave searches using pulsar timing arrays. Physical Review D, 2021, 103, .	4.7	24
4	Mapping the gravitational-wave sky with LISA: a Bayesian spherical harmonic approach. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5451-5462.	4.4	13
5	The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background. Astrophysical Journal Letters, 2021, 923, L22.	8.3	30
6	A simple graphical method for calculating the standing wave frequencies on a rectangular membrane. American Journal of Physics, 2020, 88, 605-611.	0.7	1
7	Model Dependence of Bayesian Gravitational-wave Background Statistics for Pulsar Timing Arrays. Astrophysical Journal Letters, 2020, 905, L6.	8.3	20
8	10.1119/10.0001299.1., 2020,,.		0
9	Estimating the angular power spectrum of the gravitational-wave background in the presence of shot noise. Physical Review D, 2019, 100, .	4.7	34
10	Realistic sensitivity curves for pulsar timing arrays. Physical Review D, 2019, 100, .	4.7	42
10	Realistic sensitivity curves for pulsar timing arrays. Physical Review D, 2019, 100, . Hasasia: A Python package for Pulsar Timing Array Sensitivity Curves. Journal of Open Source Software, 2019, 4, 1775.	4.7	18
	Hasasia: A Python package for Pulsar Timing Array Sensitivity Curves. Journal of Open Source		
11	Hasasia: A Python package for Pulsar Timing Array Sensitivity Curves. Journal of Open Source Software, 2019, 4, 1775. An acoustical analogue of a galactic-scale gravitational-wave detector. American Journal of Physics,	4.6	18
11 12	Hasasia: A Python package for Pulsar Timing Array Sensitivity Curves. Journal of Open Source Software, 2019, 4, 1775. An acoustical analogue of a galactic-scale gravitational-wave detector. American Journal of Physics, 2018, 86, 755-764. Detection methods for stochastic gravitational-wave backgrounds: a unified treatment. Living	4.6 0.7	18
11 12 13	Hasasia: A Python package for Pulsar Timing Array Sensitivity Curves. Journal of Open Source Software, 2019, 4, 1775. An acoustical analogue of a galactic-scale gravitational-wave detector. American Journal of Physics, 2018, 86, 755-764. Detection methods for stochastic gravitational-wave backgrounds: a unified treatment. Living Reviews in Relativity, 2017, 20, 2. Phase-coherent mapping of gravitational-wave backgrounds using ground-based laser	4.6 0.7 26.7	18 2 296
11 12 13 14	Hasasia: A Python package for Pulsar Timing Array Sensitivity Curves. Journal of Open Source Software, 2019, 4, 1775. An acoustical analogue of a galactic-scale gravitational-wave detector. American Journal of Physics, 2018, 86, 755-764. Detection methods for stochastic gravitational-wave backgrounds: a unified treatment. Living Reviews in Relativity, 2017, 20, 2. Phase-coherent mapping of gravitational-wave backgrounds using ground-based laser interferometers. Physical Review D, 2015, 92, . Time-domain implementation of the optimal cross-correlation statistic for stochastic	4.6 0.7 26.7 4.7	18 2 296 25
11 12 13 14	Hasasia: A Python package for Pulsar Timing Array Sensitivity Curves. Journal of Open Source Software, 2019, 4, 1775. An acoustical analogue of a galactic-scale gravitational-wave detector. American Journal of Physics, 2018, 86, 755-764. Detection methods for stochastic gravitational-wave backgrounds: a unified treatment. Living Reviews in Relativity, 2017, 20, 2. Phase-coherent mapping of gravitational-wave backgrounds using ground-based laser interferometers. Physical Review D, 2015, 92, . Time-domain implementation of the optimal cross-correlation statistic for stochastic gravitational-wave background searches in pulsar timing data. Physical Review D, 2015, 91, . Understanding the gravitational-wave Hellings and Downs curve for pulsar timing arrays in terms of	4.6 0.7 26.7 4.7	18 2 296 25 53

#	Article	lF	CITATIONS
19	Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise. II. Bayesian analyses. Physical Review D, 2003, 67, .	4.7	26
20	Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Physical Review D, 1999, 59, .	4.7	511