Yi-Xiang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/953418/publications.pdf Version: 2024-02-01

VI-XIANC CHENC

#	Article	IF	CITATIONS
1	Chiral binaphthylamine based emitters with donor-acceptor structures: Facile synthesis and circularly polarized luminescence. Dyes and Pigments, 2022, 199, 110085.	2.0	4
2	Strong CPL-active liquid crystal materials induced by intermolecular hydrogen-bonding interaction and a chirality induction mechanism. Soft Matter, 2022, 18, 477-481.	1.2	2
3	Inverted Circularly Polarized Luminescence Behavior Induced by Helical Nanofibers through Chiral Co-Assembly from Achiral Liquid Crystal Polymers and Chiral Inducers. ACS Nano, 2022, 16, 3173-3181.	7.3	42
4	Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Coâ€assembly Polymers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
5	Dynamic Circularly Polarized Luminescence with Tunable Handedness and Intensity Enabled by Achiral Dichroic Dyes in Cholesteric Liquid Crystal Medium. Advanced Materials, 2022, 34, e2202309.	11.1	22
6	Standard White CPâ€OLEDs Performance Achieved by Intramolecular Chirality Transfer Mechanism through Polymer Chain. Advanced Optical Materials, 2022, 10, .	3.6	16
7	Strongâ€Induced CPL Emission Promoted from Achiral Conjugated Polymerâ€Containing Emissive Nematic Liquid Crystals (Pâ€N*â€LCs). Macromolecular Rapid Communications, 2021, 42, e2000548.	2.0	18
8	Tunable AI-CPL behavior by regulation of microstructure of AIE-active isomers through chiral emissive liquid crystals. Dyes and Pigments, 2021, 186, 109001.	2.0	6
9	Solutionâ€Processed White Circularly Polarized Organic Lightâ€Emitting Diodes Based on Chiral Binaphthyl Emitters. Chemistry - A European Journal, 2021, 27, 589-593.	1.7	24
10	Circularly polarized electroluminescence from an achiral fluorophore induced by co-assembly with chiral polymers. Journal of Materials Chemistry C, 2021, 9, 12141-12147.	2.7	24
11	Deep Blue Circularly Polarized Luminescence Response Behavior of an Achiral Pyrene-Based Emitter Regulated by Chiral Co-assembly Helical Nanofibers. Journal of Physical Chemistry Letters, 2021, 12, 3767-3772.	2.1	15
12	Molecular Engineering of Polymer Dots for Electrochemiluminescence Emission. ACS Applied Nano Materials, 2021, 4, 7244-7252.	2.4	14
13	Fullâ€Color and White Circularly Polarized Luminescence Promoted by Liquid Crystal Selfâ€Assembly Containing Chiral Naphthalimide Dyes. Advanced Optical Materials, 2021, 9, 2100961.	3.6	30
14	A photosensitive-type CPL response controlled by intermolecular dynamic FRET and chiral transfer in ternary chiral emissive nematic liquid crystals. Journal of Materials Chemistry C, 2021, 9, 12590-12595.	2.7	30
15	Ultrasensitive Nucleic Acid Assay Based on Cyclometalated Iridium(III) Complex with High Electrochemiluminescence Efficiency. Analytical Chemistry, 2021, 93, 1686-1692.	3.2	41
16	Ultrastrong Red Circularly Polarized Luminescence Promoted from Chiral Transfer and Intermolecular Förster Resonance Energy Transfer in Ternary Chiral Emissive Nematic Liquid Crystals. Journal of Physical Chemistry Letters, 2021, 12, 598-603.	2.1	58
17	Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Science China Chemistry, 2021, 64, 2060-2104.	4.2	248
18	Controllable Circularly Polarized Electroluminescence Performance Improved by the Dihedral Angle of Chiral-Bridged Binaphthyl-Type Dopant Inducers. ACS Applied Materials & amp; Interfaces, 2021, 13, 55420-55427.	4.0	22

#	Article	IF	CITATIONS
19	Amplified electrochemiluminescence signals promoted by the AIE-active moiety of D–A type polymer dots for biosensing. Analyst, The, 2020, 145, 233-239.	1.7	20
20	The amplified circularly polarized luminescence regulated from D–A type AIE-active chiral emitters <i>via</i> liquid crystals system. Chemical Communications, 2020, 56, 1117-1120.	2.2	58
21	High brightness circularly polarized electroluminescence from conjugated polymer F8BT induced by chiral binaphthyl-pyrene. Journal of Materials Chemistry C, 2020, 8, 15669-15676.	2.7	27
22	Strong CPL of achiral liquid crystal fluorescent polymer <i>via</i> the regulation of AIE-active chiral dopant. Chemical Communications, 2020, 56, 12829-12832.	2.2	48
23	Recyclable CPL switch regulated by using an applied DC electric field from chiral nematic liquid crystals (N*-LCs). Materials Chemistry Frontiers, 2020, 4, 2954-2961.	3.2	41
24	Trace Ir(III) complex enhanced electrochemiluminescence of AIE-active Pdots in aqueous media. Science China Chemistry, 2020, 63, 715-721.	4.2	34
25	Aggregation-Induced Electrochemiluminescence of Conjugated Pdots Containing a Trace Ir(III) Complex: Insights into Structure–Property Relationships. ACS Applied Materials & Interfaces, 2020, 12, 54012-54019.	4.0	33
26	Tunable aggregation-induced circularly polarized luminescence of chiral AIEgens <i>via</i> the regulation of mono-/di-substituents of molecules or nanostructures of self-assemblies. Materials Chemistry Frontiers, 2019, 3, 2066-2071.	3.2	23
27	High brightness circularly polarized blue emission from non-doped OLEDs based on chiral binaphthyl-pyrene emitters. Chemical Communications, 2019, 55, 9845-9848.	2.2	39
28	An Efficient Electrochemiluminescence Enhancement Strategy on Bipolar Electrode for Bioanalysis. Analytical Chemistry, 2019, 91, 12553-12559.	3.2	45
29	High Green Brightness Circularly Polarized Electroluminescence Regulated by Rigid Chiral D-A Type Emitters. Journal of Physical Chemistry C, 2019, 123, 24746-24753.	1.5	26
30	Circularly Polarized Electroluminescence of Thermally Activated Delayed Fluorescence-Active Chiral Binaphthyl-Based Luminogens. ACS Applied Materials & Interfaces, 2019, 11, 26165-26173.	4.0	90
31	Dual resonance energy transfer in triple-component polymer dots to enhance electrochemiluminescence for highly sensitive bioanalysis. Chemical Science, 2019, 10, 6815-6820.	3.7	92
32	Strong circularly polarized electroluminescence based on chiral salen-Zn(<scp>ii</scp>) complex monomer chromophores. Materials Chemistry Frontiers, 2019, 3, 867-873.	3.2	41
33	Strong CPL of achiral AIE-active dyes induced by supramolecular self-assembly in chiral nematic liquid crystals (AIE-N*-LCs). Chemical Communications, 2019, 55, 5179-5182.	2.2	109
34	High Brightness Circularly Polarized Organic Light-Emitting Diodes Based on Nondoped Aggregation-Induced Emission (AIE)-Active Chiral Binaphthyl Emitters. Organic Letters, 2019, 21, 439-443.	2.4	101
35	DOX Loaded Aggregation-induced Emission Active Polymeric Nanoparticles as a Fluorescence Resonance Energy Transfer Traceable Drug Delivery System for Self-indicating Cancer Therapy. Acta Biomaterialia, 2019, 85, 218-228.	4.1	72
36	Effective structural modification of traditional fluorophores to obtain organic mechanofluorochromic molecules. Journal of Materials Chemistry C, 2018, 6, 5075-5096.	2.7	127

#	Article	IF	CITATIONS
37	The amplified electrochemiluminescence response signal promoted by the lr(<scp>iii</scp>)-containing polymer complex. Analyst, The, 2018, 143, 2405-2410.	1.7	5
38	The amplified circularly polarized luminescence emission response of chiral 1,1′â€binaphtholâ€based polymers via Zn(II)â€coordination fluorescence enhancement. Journal of Polymer Science Part A, 2018, 56, 1282-1288.	2.5	11
39	Color-tunable AIE-active conjugated polymer nanoparticles as drug carriers for self-indicating cancer therapy <i>via</i> intramolecular FRET mechanism. Polymer Chemistry, 2018, 9, 3205-3214.	1.9	43
40	Amplification effect of circularly polarized luminescence induced from binaphthyl-based zinc(<scp>ii</scp>) chiral coordination polymers. Materials Chemistry Frontiers, 2018, 2, 554-558.	3.2	33
41	Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing. Biosensors and Bioelectronics, 2018, 100, 28-34.	5.3	67
42	Donor–Acceptor Conjugated Polymer Dots for Tunable Electrochemiluminescence Activated by Aggregation-Induced Emission-Active Moieties. Journal of Physical Chemistry Letters, 2018, 9, 5296-5302.	2.1	83
43	Strong Aggregationâ€Induced CPL Response Promoted by Chiral Emissive Nematic Liquid Crystals (N*â€LCs). Chemistry - A European Journal, 2018, 24, 12607-12612.	1.7	85
44	Doping-free circularly polarized electroluminescence of AlE-active chiral binaphthyl-based polymers. Chemical Communications, 2018, 54, 9663-9666.	2.2	70
45	Circularly polarized luminescence based chirality transfer of the chiral BINOL moiety via rigid l€-conjugation chain backbone structures. Polymer Chemistry, 2017, 8, 1555-1561.	1.9	45
46	Reversal aggregation-induced circular dichroism from axial chirality transfer via self-assembled helical nanowires. RSC Advances, 2017, 7, 15851-15856.	1.7	33
47	Mechanochromic and acidochromic response of 4H-pyran derivatives with aggregation-induced emission properties. Dyes and Pigments, 2017, 141, 428-440.	2.0	48
48	Tunable AICPL of (<i>S</i>)â€Binaphthylâ€Based Threeâ€Component Polymers via FRET Mechanism. Macromolecular Rapid Communications, 2017, 38, 1700150.	2.0	24
49	Polymorphism and mechanochromism of N-alkylated 1,4-dihydropyridine derivatives containing different electron-withdrawing end groups. Journal of Materials Chemistry C, 2017, 5, 5183-5192.	2.7	45
50	Circularly polarized luminescence of chiral 1,8-naphthalimide-based pyrene fluorophore induced via supramolecular self-assembly. Journal of Materials Chemistry C, 2017, 5, 6030-6036.	2.7	30
51	Strong circularly polarized luminescence induced from chiral supramolecular assembly of helical nanorods. Chemical Communications, 2017, 53, 7505-7508.	2.2	65
52	Relay Visible-Light Photoredox Catalysis: Synthesis of Pyrazole Derivatives via Formal [4 + 1] Annulation and Aromatization. Organic Letters, 2017, 19, 214-217.	2.4	55
53	Harnessing sunlight without a photosensitizer for highly efficient consecutive [3+2]/[4+2] annulation to synthesize fused benzobicyclic skeletons. Chemical Communications, 2017, 53, 10707-10710.	2.2	20
54	5-(2,6-Bis((E)-4-(dimethylamino)styryl)-1-ethylpyridin-4(1H)-ylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione: aggregation-induced emission, polymorphism, mechanochromism, and thermochromism. Journal of Materials Chemistry C, 2017, 5, 9264-9272.	2.7	45

#	Article	IF	CITATIONS
55	Photoredox Divergent 1,2-Difunctionalization of Alkenes with <i>gem</i> -Dibromides. Organic Letters, 2017, 19, 6452-6455.	2.4	39
56	A New Polymer-Based Fluorescent Chemosensor Incorporating Propane-1,3-Dione and 2,5-Diethynylbenzene Moieties for Detection of Copper(II) and Iron(III). Polymers, 2017, 9, 267.	2.0	25
57	Conjugated polymer nanoparticles with aggregation induced emission characteristics for intracellular <scp>F</scp> e ³⁺ sensing. Journal of Polymer Science Part A, 2016, 54, 1686-1693.	2.5	34
58	Visibleâ€Light Photoredox atalyzed Câ^'H Difluoroalkylation of Hydrazones through an Aminyl Radical/Polar Mechanism. Angewandte Chemie - International Edition, 2016, 55, 2939-2943.	7.2	176
59	AIE-active conjugated polymer nanoparticles with red-emission for in vitro and in vivo imaging. RSC Advances, 2016, 6, 114580-114586.	1.7	12
60	Synthesis and fluorescence study of conjugated polymers based on 2,4,6-triphenylpyridine moieties. New Journal of Chemistry, 2016, 40, 6281-6288.	1.4	13
61	The effect of N-alkyl chain length on the photophysical properties of indene-1,3-dionemethylene-1,4-dihydropyridine derivatives. Journal of Materials Chemistry C, 2016, 4, 5970-5980.	2.7	33
62	Regulating Circularly Polarized Luminescence Signals of Chiral Binaphthyl-Based Conjugated Polymers by Tuning Dihedral Angles of Binaphthyl Moieties. Macromolecules, 2016, 49, 5444-5451.	2.2	86
63	Circularly Polarized Luminescence of Chiral Perylene Diimide Based Enantiomers Triggered by Supramolecular Selfâ€Assembly. Chemistry - A European Journal, 2016, 22, 12910-12915.	1.7	21
64	The functionalization of a cascade of C(sp ²)–H/C(sp ³)–H bonds: synthesis of fused dihydropyrazoles via visible-light photoredox catalysis. Chemical Communications, 2016, 52, 11901-11904.	2.2	34
65	Visible-light-induced three-component 1,2-difluoroalkylarylation of styrenes with α-carbonyl difluoroalkyl bromides and indoles. Organic Chemistry Frontiers, 2016, 3, 1443-1446.	2.3	46
66	Strong and Reversible Circularly Polarized Luminescence Emission of a Chiral 1,8â€Naphthalimide Fluorophore Induced by Excimer Emission and Orderly Aggregation. Chemistry - A European Journal, 2016, 22, 9519-9522.	1.7	66
67	Piezochromism, acidochromism, solvent-induced emission changes and cell imaging of D-Ï€-A 1,4-dihydropyridine derivatives with aggregation-induced emission properties. Dyes and Pigments, 2016, 133, 261-272.	2.0	38
68	Silole-Containing Polymer Nanodot: An Aqueous Low-Potential Electrochemiluminescence Emitter for Biosensing. Analytical Chemistry, 2016, 88, 845-850.	3.2	77
69	Indene-1,3-dionemethylene-4H-pyran derivatives containing alkoxy chains of various lengths: aggregation-induced emission enhancement, mechanofluorochromic properties and solvent-induced emission changes. Journal of Materials Chemistry C, 2016, 4, 2862-2870.	2.7	68
70	Reversal Circularly Polarized Luminescence of AIEâ€Active Chiral Binaphthyl Molecules from Solution to Aggregation. Chemistry - A European Journal, 2015, 21, 13196-13200.	1.7	78
71	Visibleâ€Lightâ€Induced Radical Tandem Aryldifluoroacetylation of Cinnamamides: Access to Difluoroacetylated Quinoloneâ€2â€ones And 1â€Azaspiro[4.5]decanes. Advanced Synthesis and Catalysis, 2015, 357, 3057-3063.	2.1	89
72	Central-to-Axial Chirality Transfer-Induced CD Sensor for Chiral Recognition and <i>ee</i> Value Detection of 1,2-DACH Enantiomers. Macromolecular Chemistry and Physics, 2015, 216, 1925-1929.	1.1	5

#	Article	IF	CITATIONS
73	A study on tunable AIE (AIEE) of boron ketoiminate-based conjugated polymers for live cell imaging. Polymer Chemistry, 2015, 6, 5070-5076.	1.9	29
74	CPL emission of chiral BINOL-based polymers via chiral transfer of the conjugated chain backbone structure. RSC Advances, 2015, 5, 105851-105854.	1.7	17
75	CO-enabled rhenium hydride catalyst for directed C(sp ²)–H bond alkylation with olefins. Organic Chemistry Frontiers, 2015, 2, 378-382.	2.3	37
76	Investigation of the effect of hapten heterology in the enzyme-linked immunosorbent assay for Sudan I. Food and Agricultural Immunology, 2015, 26, 13-25.	0.7	3
77	Aggregation-induced circularly polarized luminescence of an (R)-binaphthyl-based AIE-active chiral conjugated polymer with self-assembled helical nanofibers. Polymer Chemistry, 2015, 6, 2416-2422.	1.9	91
78	Rhodium atalyzed Direct C7 Alkynylation of Indolines. Advanced Synthesis and Catalysis, 2015, 357, 1149-1153.	2.1	45
79	Aggregation-Induced Fluorescence Emission Properties of Dicyanomethylene-1,4-dihydropyridine Derivatives. Journal of Physical Chemistry C, 2015, 119, 6737-6748.	1.5	89
80	Far-red/near-infrared fluorescent conjugated polymer nanoparticles with size-dependent chirality and cell imaging applications. Polymer Chemistry, 2015, 6, 3962-3969.	1.9	41
81	Circularly polarized luminescence of AIE-active chiral O-BODIPYs induced via intramolecular energy transfer. Chemical Communications, 2015, 51, 9014-9017.	2.2	124
82	Microwave-assisted preparation of N-doped carbon dots as a biosensor for electrochemical dopamine detection. Journal of Colloid and Interface Science, 2015, 452, 199-202.	5.0	82
83	N-doped carbon dots synthesized by rapid microwave irradiation as highly fluorescent probes for Pb ²⁺ detection. New Journal of Chemistry, 2015, 39, 3357-3360.	1.4	77
84	Multi-Stimulus-Responsive Fluorescent Properties of Donor-Ï€-Acceptor Indene-1,3-dionemethylene-1,4-dihydropyridine Derivatives. Journal of Physical Chemistry C, 2015, 119, 23138-23148.	1.5	82
85	Red colored CPL emission of chiral 1,2-DACH-based polymers via chiral transfer of the conjugated chain backbone structure. Polymer Chemistry, 2015, 6, 6802-6805.	1.9	39
86	Fluorescence Study of Chiral βâ€Ketoiminateâ€Based Newly Synthesized Boron Hybrid Polymers. Macromolecular Chemistry and Physics, 2014, 215, 358-364.	1.1	50
87	(S)-BINOL-based boronic ester fluorescence sensors for enantioselective recognition of α-phenylethylamine and phenylglycinol. RSC Advances, 2014, 4, 5887.	1.7	24
88	Synthesis and tunable chiroptical properties of chiral BODIPY-based D–π–A conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 1076-1084.	2.7	54
89	Chiral sensing of Eu(III) $\hat{a} \in c$ ontaining achiral polymer complex from chiral amino acids coordination induction. Journal of Polymer Science Part A, 2014, 52, 3080-3086.	2.5	13
90	â€~Click'-BINOL based chiral ionic polymers for highly enantioselective recognition of tryptophan anions. Polymer Chemistry, 2014, 5, 5218.	1.9	6

#	Article	IF	CITATIONS
91	A novel lowâ€bandgap conjugated polymer based on Ru(II) bis(acetylide) complex and BODIPY moieties. Journal of Polymer Science Part A, 2014, 52, 1686-1692.	2.5	10
92	A tetraphenylethene-based chiral polymer: an AIE luminogen with high and tunable CPL dissymmetry factor. Journal of Materials Chemistry C, 2013, 1, 4713.	2.7	76
93	A helical chiral polymer-based chromo-fluorescence and CD response sensor for selective detection of trivalent cations. Journal of Polymer Science Part A, 2013, 51, 4070-4075.	2.5	21
94	Near-infrared emission of novel bent-core V-shaped conjugated polymers based on the B,O-chelated azadipyrromethene structure. Polymer Chemistry, 2013, 4, 4396.	1.9	27
95	Rhenium-Catalyzed Acceptorless Dehydrogenative Coupling via Dual Activation of Alcohols and Carbonyl Compounds. ACS Catalysis, 2013, 3, 2195-2198.	5.5	37
96	Chiral sensing for induced circularly polarized luminescence using an Eu(iii)-containing polymer and d- or l-proline. Chemical Communications, 2013, 49, 5772.	2.2	134
97	A Highly Sensitive and Selective Fluorescence Chemosensor for Cu ²⁺ and Zn ²⁺ Based on Solvent Effect. Chinese Journal of Chemistry, 2013, 31, 195-199.	2.6	24
98	<i>In Situ</i> Formed Bifunctional Primary Amineâ€Imine Catalyst: Application to the Construction of Chiral Tertiary Alcohols through Asymmetric Aldolâ€Type Reaction. Advanced Synthesis and Catalysis, 2013, 355, 2029-2036.	2.1	16
99	A visible-light-promoted aerobic C–H/C–N cleavage cascade to isoxazolidine skeletons. Chemical Science, 2013, 4, 1281.	3.7	104
100	Aza-BODIPY-based D–π–A conjugated polymers with tunable band gap: synthesis and near-infrared emission. Polymer Chemistry, 2013, 4, 520-527.	1.9	51
101	A coumarin-based chiral fluorescence sensor for the highly enantioselective recognition of phenylalaninol. New Journal of Chemistry, 2013, 37, 317-322.	1.4	24
102	A chiral ionic polymer for direct visual enantioselective recognition of α-amino acid anions. Chemical Communications, 2013, 49, 2891.	2.2	43
103	Tetraethylammonium Bromide atalyzed Oxidative Thioesterification of Aldehydes and Alcohols. Advanced Synthesis and Catalysis, 2013, 355, 3558-3562.	2.1	68
104	Synthesis and Characterization of 2-Alkylbenzotriazole-Based Donor-Ï€-Acceptor-Type Copolymers. Synlett, 2013, 24, 1505-1508.	1.0	2
105	A New Chiral Binaphthaleneâ€Based Fluorescence Polymer Sensor for the Highly Enantioselective Recognition of Phenylalaninol. Chemistry - A European Journal, 2013, 19, 16066-16071.	1.7	36
106	Synthesis and Fluorescence Properties of Chiral Nearâ€Infrared Emissive Polymers Incorporating BODIPY Derivatives and (<i>S</i>)â€Binaphthyl. Macromolecular Chemistry and Physics, 2012, 213, 2238-2245.	1.1	30
107	Tuning chromaticity based on energy transfer from the conjugated polymer to the Eu(TTA)3 moiety. Polymer Chemistry, 2012, 3, 2578.	1.9	14
108	A highly regioselective sp3 C–H amination of tertiary amides based on Fe(ii) complex catalysts. RSC Advances, 2012, 2, 6733.	1.7	26

#	Article	IF	CITATIONS
109	In Situ Generated 1:1 Zn(II)-Containing Polymer Complex Sensor for Highly Enantioselective Recognition of N-Boc-Protected Alanine. Macromolecules, 2012, 45, 7835-7842.	2.2	40
110	A highly selective and sensitive polymer-based OFF-ON fluorescent sensor for Hg ²⁺ detection incorporating salen and perylenyl moieties. Journal of Materials Chemistry, 2012, 22, 478-482.	6.7	126
111	The Au(iii)-catalyzed coupling reactions between alcohols and N-heterocycles via C–H bond activation. RSC Advances, 2012, 2, 10496.	1.7	23
112	Polymerâ€based colorimetric and "turn off―fluorescence sensor incorporating benzo[2,1,3]thiadiazole moiety for Hg ²⁺ Detection. Journal of Polymer Science Part A, 2012, 50, 517-522.	2.5	29
113	A Scalable, Efficient Goldâ€Catalyzed Oxidative Phosphonation of <i>sp</i> ³ CH Bonds using Air as Sustainable Oxidant. Advanced Synthesis and Catalysis, 2012, 354, 1646-1650.	2.1	88
114	Selective Saccharide Recognition Using Modular Diboronic Acid Fluorescent Sensors. European Journal of Organic Chemistry, 2012, 2012, 1223-1229.	1.2	28
115	Fluorescence upconversion properties of a chiral polybinaphthyl induced by twoâ€photon absorption. Journal of Applied Polymer Science, 2012, 124, 2867-2870.	1.3	2
116	Organocatalytic Enantioselective Sulfenylation of βâ€Keto Phosphonates: A Convenient Approach to Construct Hetero―Quaternary Stereocenters. Advanced Synthesis and Catalysis, 2011, 353, 545-549.	2.1	44
117	Organocatalytic Asymmetric CS Bond Formation: Synthesis of αâ€Methyleneâ€Î²â€mercapto Esters with Simple Alkyl Thiols. Advanced Synthesis and Catalysis, 2011, 353, 3301-3306.	2.1	28
118	Imidazolium Ionâ€Tagged Proline Organocatalyst for αâ€Aminoxylation of Aldehydes and Ketones in Ionic Liquids. Advanced Synthesis and Catalysis, 2010, 352, 108-112.	2.1	27
119	A Highly Selective Fluorescenceâ€Based Polymer Sensor Incorporating an (<i>R</i> , <i>R</i>)â€Salen Moiety for Zn ²⁺ Detection. Chemistry - A European Journal, 2010, 16, 12898-12903.	1.7	138
120	Polymerâ€based fluorescence sensors incorporating chiral binaphthyl and benzo[2,1,3]thiadiazole moieties for Hg ²⁺ detection. Journal of Polymer Science Part A, 2010, 48, 997-1006.	2.5	49
121	A fluorescent chemosensor based on optically active 2,2′â€binaphthoâ€20â€crownâ€6 for metal ions. Polymer International, 2010, 59, 712-718.	1.6	9
122	Fluorescent chemosensor based on the conjugated polymer incorporating 2,2′â€bipyridyl moiety for transition metal ions. Journal of Applied Polymer Science, 2009, 111, 3137-3143.	1.3	13
123	A Fluorescent Chemosensor for Transitionâ€Metal Ions Based on Optically Active Polybinaphthyl and 2,2′â€Bipyridine. Macromolecular Chemistry and Physics, 2008, 209, 685-694.	1.1	26
124	Synthesis and enantioselectivities of soluble polymers incorporating optically active binaphthyl and binaphthol. Journal of Applied Polymer Science, 2007, 106, 821-827.	1.3	10
125	Synthesis and characterization of chiral polymer complexes incorporating polybinaphthyls, bipyridine, and Eu(III). Journal of Polymer Science Part A, 2007, 45, 650-660.	2.5	32
126	Polybinaphthyls incorporating chiral 2,2′-binaphthyl and isoquinoline moieties by Sonogashira reaction. Polymer, 2006, 47, 6598-6605.	1.8	22

#	Article	IF	CITATIONS
127	Synthesis and Characterization of Polybinaphthyls Incorporating Chiral (R) or (S)-2,2′-Binaphthyl Entities by Heck Reaction. Polymer Journal, 2005, 37, 355-362.	1.3	16
128	Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Coâ€assembly Polymers. Angewandte Chemie, 0, , .	1.6	14