
Charlotte L Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9533890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell, 2022, 185, 379-396.e38.	28.9	343
2	ILC3s control splenic cDC homeostasis via lymphotoxin signaling. Journal of Experimental Medicine, 2021, 218, .	8.5	6
3	Hepatic Macrophage Responses in Inflammation, a Function of Plasticity, Heterogeneity or Both?. Frontiers in Immunology, 2021, 12, 690813.	4.8	15
4	A20 deficiency in myeloid cells protects mice from diet-induced obesity and insulin resistance due to increased fatty acid metabolism. Cell Reports, 2021, 36, 109748.	6.4	14
5	The conventional dendritic cell lineage is born. Nature Reviews Immunology, 2021, 21, 623-623.	22.7	1
6	In matters of the heart, (cellular) communication is key. Immunity, 2021, 54, 1906-1908.	14.3	2
7	Welcoming c-MAF to the macrophage transcription factor VAM-ily. Science Immunology, 2021, 6, eabl5793.	11.9	1
8	Osteopontin Expression Identifies a Subset of Recruited Macrophages Distinct from Kupffer Cells in the Fatty Liver. Immunity, 2020, 53, 641-657.e14.	14.3	287
9	Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. Immunity, 2020, 52, 1039-1056.e9.	14.3	237
10	Macrophage Subsets in Obesity, Aligning the Liver and Adipose Tissue. Frontiers in Endocrinology, 2020, 11, 259.	3.5	32
11	Transcriptional regulation of DC fate specification. Molecular Immunology, 2020, 121, 38-46.	2.2	21
12	OTULIN Prevents Liver Inflammation and Hepatocellular Carcinoma by Inhibiting FADD- and RIPK1 Kinase-Mediated Hepatocyte Apoptosis. Cell Reports, 2020, 30, 2237-2247.e6.	6.4	30
13	Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nature Neuroscience, 2020, 23, 676-689.	14.8	148
14	Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 2019, 51, 638-654.e9.	14.3	384
15	A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nature Neuroscience, 2019, 22, 1021-1035.	14.8	603
16	Priority lane to cDC1 open for IRF8+ progenitors. Blood, 2019, 133, 1795-1797.	1.4	1
17	ZEBs: Novel Players in Immune Cell Development and Function. Trends in Immunology, 2019, 40, 431-446.	6.8	86
18	Macrophages and lipid metabolism. Cellular Immunology, 2018, 330, 27-42.	3.0	289

2

CHARLOTTE L SCOTT

#	Article	IF	CITATIONS
19	Myocarditis Elicits Dendritic Cell and Monocyte Infiltration in the Heart and Self-Antigen Presentation by Conventional Type 2 Dendritic Cells. Frontiers in Immunology, 2018, 9, 2714.	4.8	28
20	Tissue Unit-ed: Lung Cells Team up to Drive Alveolar Macrophage Development. Cell, 2018, 175, 898-900.	28.9	6
21	A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation. Nature Communications, 2018, 9, 2036.	12.8	152
22	The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity, 2018, 49, 312-325.e5.	14.3	172
23	The role of Kupffer cells in hepatic iron and lipid metabolism. Journal of Hepatology, 2018, 69, 1197-1199.	3.7	63
24	â€~NOTCHing up' the In Vitro Production of Dendritic Cells. Trends in Immunology, 2018, 39, 765-767.	6.8	5
25	Isolation and Identification of Intestinal Myeloid Cells. Methods in Molecular Biology, 2017, 1559, 223-239.	0.9	15
26	Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunology, 2017, 10, 831-844.	6.0	155
27	Does niche competition determine the origin of tissue-resident macrophages?. Nature Reviews Immunology, 2017, 17, 451-460.	22.7	321
28	Myocardial Infarction Primes Autoreactive T Cells through Activation of Dendritic Cells. Cell Reports, 2017, 18, 3005-3017.	6.4	104
29	Barrier-tissue macrophages: functional adaptation to environmental challenges. Nature Medicine, 2017, 23, 1258-1270.	30.7	114
30	Non-alcoholic steatohepatitis induces transient changes within the liver macrophage pool. Cellular Immunology, 2017, 322, 74-83.	3.0	81
31	Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nature Communications, 2016, 7, ncomms11852.	12.8	275
32	The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nature Communications, 2016, 7, 13720.	12.8	217
33	The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. Journal of Experimental Medicine, 2016, 213, 897-911.	8.5	125
34	Isolation and Identification of Conventional Dendritic Cell Subsets from the Intestine of Mice and Men. Methods in Molecular Biology, 2016, 1423, 101-118.	0.9	10
35	IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively. Immunity, 2016, 45, 626-640.	14.3	273
36	Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species. Immunity, 2016, 45, 669-684.	14.3	683

CHARLOTTE L SCOTT

#	Article	IF	CITATIONS
37	Conventional Dendritic Cells: Identification, Subsets, Development, andÂFunctions. , 2016, , 374-383.		Ο
38	Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages. Immunity, 2016, 44, 755-768.	14.3	478
39	Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nature Communications, 2016, 7, 10321.	12.8	604
40	Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunology, 2015, 8, 38-48.	6.0	93
41	CCR2+CD103â^' intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunology, 2015, 8, 327-339.	6.0	140
42	Mononuclear phagocytes of the intestine, the skin, and the lung. Immunological Reviews, 2014, 262, 9-24.	6.0	91
43	Signal regulatory protein alpha (SIRPα) regulates the homeostasis of CD103 ⁺ CD11b ⁺ <scp>DC</scp> s in the intestinal lamina propria. European Journal of Immunology, 2014, 44, 3658-3668.	2.9	25
44	Type 2 Innate Lymphoid Cells Drive CD4+ Th2 Cell Responses. Journal of Immunology, 2014, 192, 2442-2448.	0.8	268
45	Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature Immunology, 2014, 15, 929-937.	14.5	921
46	Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid. Mucosal Immunology, 2014, 7, 101-113.	6.0	130
47	The MacBlue Binary Transgene (csf1r-gal4VP16/UAS-ECFP) Provides a Novel Marker for Visualisation of Subsets of Monocytes, Macrophages and Dendritic Cells and Responsiveness to CSF1 Administration. PLoS ONE, 2014, 9, e105429.	2.5	48
48	Intestinal CD103â^' dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunology, 2013, 6, 104-113.	6.0	227
49	Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunology, 2013, 6, 498-510.	6.0	749
50	Dendritic cell subsets in the intestinal lamina propria: Ontogeny and function. European Journal of Immunology, 2013, 43, 3098-3107.	2.9	118
51	Intestinal CD103+ dendritic cells: master regulators of tolerance?. Trends in Immunology, 2011, 32, 412-419.	6.8	294
52	A breath of fresh macrophages ameliorates inflammation in the hypoxic lung. Nature Immunology, 0, , .	14.5	1