Amilra Prasanna De Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9533649/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taming Tris(bipyridine)ruthenium(II) and Its Reactions in Water by Capture/Release with Shape-Switchable Symmetry-Matched Cyclophanes. Journal of the American Chemical Society, 2022, 144, 4977-4988.	13.7	12
2	Crossing the divide: Experiences of taking fluorescent PET (photoinduced electron transfer) sensing/switching systems from solution to solid. Dyes and Pigments, 2022, 204, 110453.	3.7	9
3	Recent developments in CO2 capture/storage/utilization with aromatic macrocycles. Carbon Capture Science & Technology, 2022, 4, 100058.	10.4	5
4	Fluorescent Molecular Logic Gates Driven by Temperature and by Protons in Solution and on Solid. Chemistry - A European Journal, 2021, 27, 13268-13274.	3.3	12
5	Supra-molecular agents running tasks intelligently (SMARTI): recent developments in molecular logic-based computation. Molecular Systems Design and Engineering, 2020, 5, 1325-1353.	3.4	31
6	Fluorescent molecular logic gates based on photoinduced electron transfer (PET) driven by a combination of atomic and biomolecular inputs. Chemical Communications, 2020, 56, 6838-6841.	4.1	20
7	A Personal Journey across Fluorescent Sensing and Logic Associated with Polymers of Various Kinds. Polymers, 2019, 11, 1351.	4.5	8
8	Molecular memory with downstream logic processing exemplified by switchable and self-indicating guest capture and release. Nature Communications, 2019, 10, 49.	12.8	45
9	Population analysis to increase the robustness of molecular computational identification and its extension into the near-infrared for substantial numbers of small objects. Chemical Science, 2019, 10, 2272-2279.	7.4	19
10	Precise Proton Mapping near Ionic Micellar Membranes with Fluorescent Photoinducedâ€Electronâ€Transfer Sensors. Chemistry - A European Journal, 2019, 25, 8522-8527.	3.3	7
11	Lighting-up protein–ligand interactions with fluorescent PET (photoinduced electron transfer) sensor designs. Chemical Communications, 2018, 54, 1319-1322.	4.1	19
12	Consolidating Molecular Logic with New Solidâ€Bound YES and PASSâ€1 Gates and Their Combinations. ChemPhysChem, 2017, 18, 1760-1766.	2.1	23
13	Measurement of Local Sodium Ion Levels near Micelle Surfaces with Fluorescent Photoinducedâ€Electronâ€Transfer Sensors. Angewandte Chemie - International Edition, 2016, 55, 768-771.	13.8	37
14	What has supramolecular chemistry done for us?. Supramolecular Chemistry, 2016, 28, 201-203.	1.2	5
15	Sterically Hindered Diaryl Benzobis(thiadiazole)s as Effective Photochromic Switches. Angewandte Chemie - International Edition, 2015, 54, 9754-9756.	13.8	30
16	Bright molecules for sensing, computing and imaging: a tale of two once-troubled cities. Beilstein Journal of Organic Chemistry, 2015, 11, 2774-2784.	2.2	8
17	Small molecular logic systems can draw the outlines of objects via edge visualization. Chemical Science, 2015, 6, 4472-4478.	7.4	31
18	Fluorescent logic systems for sensing and molecular computation: structure–activity relationships in edge-detection. Faraday Discussions, 2015, 185, 337-346.	3.2	7

#	Article	IF	CITATIONS
19	Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches. Chemical Society Reviews, 2015, 44, 4203-4211.	38.1	462
20	Building pH Sensors into Paper-Based Small-Molecular Logic Systems for Very Simple Detection of Edges of Objects. Journal of the American Chemical Society, 2015, 137, 3763-3766.	13.7	67
21	Taking baby steps in molecular logic-based computation. Chemical Communications, 2015, 51, 8403-8409.	4.1	95
22	Modification of Fluorescent Photoinduced Electron Transfer (PET) Sensors/Switches To Produce Molecular Photoâ€lonic Triode Action. Angewandte Chemie - International Edition, 2014, 53, 3622-3625.	13.8	29
23	Information gathering and processing with fluorescent molecules. Frontiers of Chemical Science and Engineering, 2014, 8, 240-251.	4.4	11
24	Bright ideas. Nature Chemistry, 2012, 4, 440-441.	13.6	21
25	Path-selective photoinduced electron transfer (PET) in a membrane-associated system studied by pH-dependent fluorescence. Inorganica Chimica Acta, 2012, 381, 243-246.	2.4	22
26	Luminescent Photoinduced Electron Transfer (PET) Molecules for Sensing and Logic Operations. Journal of Physical Chemistry Letters, 2011, 2, 2865-2871.	4.6	69
27	2010: A Small Space Odyssey with Luminescent Molecules. Israel Journal of Chemistry, 2011, 51, 16-22.	2.3	7
28	Molecular Logic Gate Arrays. Chemistry - an Asian Journal, 2011, 6, 750-766.	3.3	160
29	Molecular Logic Gates and Luminescent Sensors Based on Photoinduced Electron Transfer. Topics in Current Chemistry, 2010, 300, 1-28.	4.0	38
30	From PASS 1 to YES to AND logic: building parallel processing into molecular logic gates by sequential addition of receptors. New Journal of Chemistry, 2010, 34, 476.	2.8	37
31	Quantitative mapping of aqueous microfluidic temperature with sub-degree resolution using fluorescence lifetime imaging microscopy. Lab on A Chip, 2010, 10, 1267.	6.0	74
32	Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst, The, 2009, 134, 2385.	3.5	507
33	Multiply reconfigurable â€~plug and play' molecular logic via self-assembly. Chemical Communications, 2009, , 1386.	4.1	51
34	Molecular logic and computing. , 2009, , 90-101.		1
35	Multiplexing Sensory Molecules Map Protons Near Micellar Membranes. Angewandte Chemie - International Edition, 2008, 47, 4667-4669.	13.8	79

36

3

Solid-bound, proton-driven, fluorescent $\hat{a} \in \hat{o} ff \hat{a} \in \hat{$

Amilra Prasanna De Silva

#	Article	IF	CITATIONS
37	A layer of logic. Nature, 2008, 454, 417-418.	27.8	86
38	Bright molecules with sense, logic, numeracy and utility. Organic and Biomolecular Chemistry, 2008, 6, 2468.	2.8	164
39	Analog Parallel Processing of Molecular Sensory Information. Journal of the American Chemical Society, 2007, 129, 3050-3051.	13.7	66
40	From complexation to computation: Recent progress in molecular logic. Inorganica Chimica Acta, 2007, 360, 751-764.	2.4	65
41	Sense and versatility. Nature, 2007, 445, 718-719.	27.8	31
42	Molecular logic and computing. Nature Nanotechnology, 2007, 2, 399-410.	31.5	812
43	A supramolecular chemistry basis for molecular logic and computation. Coordination Chemistry Reviews, 2007, 251, 1623-1632.	18.8	163
44	Communicating Chemical Congregation:Â A Molecular AND Logic Gate with Three Chemical Inputs as a "Lab-on-a-Molecule―Prototype. Journal of the American Chemical Society, 2006, 128, 4950-4951.	13.7	312
45	Luminescent Molecular Thermometers. Journal of Chemical Education, 2006, 83, 720.	2.3	100
46	Molecular computational elements encode large populations of small objects. Nature Materials, 2006, 5, 787-789.	27.5	228
47	Consolidating molecular AND logic with two chemical inputs. Analytica Chimica Acta, 2006, 568, 156-160.	5.4	26
48	Chemical approaches to nanometre-scale logic gates. Journal of Physics Condensed Matter, 2006, 18, S1847-S1872.	1.8	52
49	Luminescent Logic and Sensing. , 2005, , 307-315.		3
50	Luminescent sensors and switches in the early 21st century. Tetrahedron, 2005, 61, 8551-8588.	1.9	1,074
51	The Anthracen-9-ylmethyloxy Unit: An Underperforming Motif Within the Fluorescent PET (Photoinduced Electron Transfer) Sensing Framework. Journal of Fluorescence, 2005, 15, 769-775.	2.5	37
52	Development of fluorescent microgel thermometers based on thermo-responsive polymers and their modulation of sensitivity range. Journal of Materials Chemistry, 2005, 15, 2796.	6.7	132
53	Membrane Media Create Small Nanospaces for Molecular Computation. Journal of the American Chemical Society, 2005, 127, 8920-8921.	13.7	113
54	Molecular-Scale Logic Gates. Chemistry - A European Journal, 2004, 10, 574-586.	3.3	591

4

#	Article	IF	CITATIONS
55	Switching between molecular switch types by module rearrangement: Ca2+-enabled, H+-driven â€~Off–On–Off', H+-driven YES and PASS 0 as well as H+, Ca2+-driven AND logic operations. Chemical Communications, 2004, , 2048-2049.	4.1	78
56	Modulation of the Sensitive Temperature Range of Fluorescent Molecular Thermometers Based on Thermoresponsive Polymers. Analytical Chemistry, 2004, 76, 1793-1798.	6.5	107
57	Fluorescent Polymeric AND Logic Gate with Temperature and pH as Inputs. Journal of the American Chemical Society, 2004, 126, 3032-3033.	13.7	340
58	Newer optical-based molecular devices from older coordination chemistry. Dalton Transactions, 2003, , 1902-1913.	3.3	172
59	Fluorescent Molecular Thermometers Based on Polymers Showing Temperature-Induced Phase Transitions and Labeled with Polarity-Responsive Benzofurazans. Analytical Chemistry, 2003, 75, 5926-5935.	6.5	295
60	Direct detection of ion pairs by fluorescence enhancement. Chemical Communications, 2003, , 2010.	4.1	83
61	The pH-dependent fluorescence of pyridylmethyl-4-amino-1,8-naphthalimides. Arkivoc, 2003, 2003, 2023, 229-243.	0.5	40
62	Simultaneously Multiply-Configurable or Superposed Molecular Logic Systems Composed of ICT (Internal Charge Transfer) Chromophores and Fluorophores Integrated with One- or Two-Ion Receptors. Chemistry - A European Journal, 2002, 8, 4935-4945.	3.3	216
63	Logische Schaltungen mit leuchtenden Molekülen. Nachrichten Aus Der Chemie, 2001, 49, 602-606.	0.0	20
64	Luminescent sensors and photonic switches. Pure and Applied Chemistry, 2001, 73, 503-511.	1.9	77
65	Proof-of-Principle of Molecular-Scale Arithmetic. Journal of the American Chemical Society, 2000, 122, 3965-3966.	13.7	323
66	Integration of Logic Functions and Sequential Operation of Gates at the Molecular-Scale. Journal of the American Chemical Society, 1999, 121, 1393-1394.	13.7	352
67	Arenedicarboximide Building Blocks for Fluorescent Photoinduced Electron Transfer pH Sensors Applicable with Different Media and Communication Wavelengths. Chemistry - A European Journal, 1998, 4, 1810-1815.	3.3	133
68	Fluorescent PET(Photoinduced Electron Transfer) reagents for thiols. Tetrahedron Letters, 1998, 39, 5077-5080.	1.4	92
69	Molecular Photoionic AND Logic Gates with Bright Fluorescence and "Offâ^'On―Digital Action. Journal of the American Chemical Society, 1997, 119, 7891-7892.	13.7	330
70	Switching â€~on' the luminescence of one metal ion with another: selectivity characteristics with respect to the emitting and triggering metal. Chemical Communications, 1997, , 1891.	4.1	60
71	Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 1997, 97, 1515-1566.	47.7	6,736

Direct visual indication of pH windows: $\hat{a} \in \hat{o} ff \hat{a} \in \hat$

#	Article	IF	CITATIONS
73	Photoionic devices with receptor-functionalized fluorophores. Pure and Applied Chemistry, 1996, 68, 1443-1448.	1.9	69
74	Proton-Controlled Switching of Luminescence in Lanthanide Complexes in Aqueous Solution: pH Sensors Based on Long-Lived Emission. Angewandte Chemie International Edition in English, 1996, 35, 2116-2118.	4.4	129
75	Neue fluoreszierende Modellverbindungen für das Studium des lichtinduzierten Elektronentransfers: der Einfluß eines molekularen elektrischen Feldes im angeregten Zustand. Angewandte Chemie, 1995, 107, 1889-1891.	2.0	38
76	New Fluorescent Model Compounds for the Study of Photoinduced Electron Transfer: The Influence of a Molecular Electric Field in the Excited State. Angewandte Chemie International Edition in English, 1995, 34, 1728-1731.	4.4	313
77	Bright spies for chiral molecules. Nature, 1995, 374, 310-311.	27.8	13
78	Fluorescent PET (photoinduced electron transfer) sensors with targeting/anchoring modules as molecular versions of submarine periscopes for mapping membrane-bounded protons. Journal of the Chemical Society Chemical Communications, 1994, , 405.	2.0	57
79	â€~Off–on' fluorescent sensors for physiological levels of magnesium ions based on photoinduced electron transfer (PET), which also behave as photoionic OR logic gates. Journal of the Chemical Society Chemical Communications, 1994.	2.0	127
	Luminescence and charge transfer. Part 3. The use of chromophores with ICT (internal charge) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 472
80	sensors and related absorption pH sensors with aminoalkyl side chains. Journal of the Chemical Society Perkin Transactions II, 1993, , 1611.	0.9	72
81	Fluorescent Photoinduced Electron-Transfer Sensors. ACS Symposium Series, 1993, , 45-58.	0.5	9
82	Luminescence and charge transfer. Part 2. Aminomethyl anthracene derivatives as fluorescent PET (photoinduced electron transfer) sensors for protons. Journal of the Chemical Society Perkin Transactions II, 1992, , 1559.	0.9	90
83	Molecular fluorescent signalling with â€~fluor–spacer–receptor' systems: approaches to sensing and switching devices via supramolecular photophysics. Chemical Society Reviews, 1992, 21, 187-195.	38.1	573
84	Phosphorescent PET (photoinduced electron transfer) sensors: prototypical examples for proton monitoring and a â€~message in a bottle' enhancement strategy with cyclodextrins. Journal of the Chemical Society Chemical Communications, 1991, , 1148-1150.	2.0	40
85	Fluorescence"Off–On―Signalling upon Linear Recognition and Binding ofα,ï‰-Alkanediyldiammonium Ions by 9,10-Bis{(1-aza-4,7,10,13,16-pentaoxacyclooctadecyl)methyl}anthracene. Angewandte Chemie International Edition in English, 1990, 29, 1173-1175.	4.4	101
86	Fluoreszenzveräderungen durch Bindung von α,ï‰â€Alkandiyldiammoniumâ€ŀonen an 9,10â€Bis{(1â€azaâ€4,7,10,13,16â€pentaoxacyclooctadecyl)methyl}anthracen: ein System zur molekularen Lägenerkennung. Angewandte Chemie, 1990, 102, 1159-1161.	2.0	14
87	Fluorescent PET (photoinduced electron transfer) sensors selective for submicromolar calcium with quantitatively predictable spectral and ion-binding properties. Journal of the Chemical Society Chemical Communications, 1990, , 186.	2.0	72
88	Fluorescent PET (photo-induced electron transfer) sensors for alkali metal ions with improved selectivity against protons and with predictable binding constants. Journal of the Chemical Society Chemical Communications, 1989, , 1183.	2.0	65
89	Compartmental fluorescent pH indicators with nearly complete predictability of indicator parameters; molecular engineering of pH sensors. Journal of the Chemical Society Chemical Communications, 1989, , 1054.	2.0	51
90	AN INEXPENSIVE STIRRING DEVICE FOR THE â€ [~] MERRY-GO-ROUND' PHOTOREACTOR FOR THE DETERMINATI OF REACTION QUANTUM YIELDS. Photochemistry and Photobiology, 1987, 46, 1021-1022.	ON 2.5	0

#	Article	IF	CITATIONS
91	Fluorescent signalling crown ethers; †switching on' of fluorescence by alkali metal ion recognition and binding in situ. Journal of the Chemical Society Chemical Communications, 1986, , 1709-1710.	2.0	233
92	A new class of fluorescent pH indicators based on photo-induced electron transfer. Journal of the Chemical Society Chemical Communications, 1985, , 1669.	2.0	167