
Michael B Powner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9533172/publications.pdf Version: 2024-02-01

MICHAEL R POWNER

#	Article	IF	CITATIONS
1	The 3D organisation of mitochondria in primate photoreceptors. Scientific Reports, 2021, 11, 18863.	3.3	11
2	Fundamental differences in patterns of retinal ageing between primates and mice. Scientific Reports, 2019, 9, 12574.	3.3	14
3	Mitochondrial absorption of short wavelength light drives primate blue retinal cones into glycolysis which may increase their pace of aging. Visual Neuroscience, 2019, 36, E007.	1.0	7
4	FUNDUS-WIDE SUBRETINAL AND PIGMENT EPITHELIAL ABNORMALITIES IN MACULAR TELANGIECTASIA TYPE 2. Retina, 2018, 38, S105-S113.	1.7	10
5	Assessment of the Complex Refractive Indices of Xenopus Laevis Sciatic Nerve for the Optimization of Optical (NIR) Neurostimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 2306-2314.	4.9	4
6	Rescue of the MERTK phagocytic defect in a human iPSC disease model using translational read-through inducing drugs. Scientific Reports, 2017, 7, 51.	3.3	55
7	Primate retinal cones express phosphorylated tau associated with neuronal degeneration yet survive in old age. Experimental Eye Research, 2017, 165, 105-108.	2.6	16
8	No evidence for loss of short-wavelength sensitive cone photoreceptors in normal ageing of the primate retina. Scientific Reports, 2017, 7, 46346.	3.3	16
9	Neuropilin 1 Involvement in Choroidal and Retinal Neovascularisation. PLoS ONE, 2017, 12, e0169865.	2.5	14
10	Evaluation of Nonperfused Retinal Vessels in Ischemic Retinopathy. , 2016, 57, 5031.		25
11	Improving Mitochondrial Function Protects Bumblebees from Neonicotinoid Pesticides. PLoS ONE, 2016, 11, e0166531.	2.5	32
12	Pleiotropic action of CpG-ODN on endothelium and macrophages attenuates angiogenesis through distinct pathways. Scientific Reports, 2016, 6, 31873.	3.3	13
13	Mislocalisation of BEST1 in iPSC-derived retinal pigment epithelial cells from a family with autosomal dominant vitreoretinochoroidopathy (ADVIRC). Scientific Reports, 2016, 6, 33792.	3.3	25
14	Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1. Nature Medicine, 2016, 22, 439-445.	30.7	183
15	Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice. PLoS ONE, 2015, 10, e0134308.	2.5	13
16	Using Stem Cells to Model Diseases of the Outer Retina. Computational and Structural Biotechnology Journal, 2015, 13, 382-389.	4.1	23
17	Depot Indocyanine green dye for <i>in vivo</i> visualization of infiltrating leukocytes. DMM Disease Models and Mechanisms, 2015, 8, 1479-87.	2.4	9
18	The Leber Congenital Amaurosis Protein AIPL1 and EB Proteins Co-Localize at the Photoreceptor Cilium. PLoS ONE, 2015, 10, e0121440.	2.5	8

MICHAEL B POWNER

#	Article	IF	CITATIONS
19	Differential Apicobasal VEGF Signaling at Vascular Blood-Neural Barriers. Developmental Cell, 2014, 30, 541-552.	7.0	79
20	Death by color: differential cone loss in the aging mouse retina. Neurobiology of Aging, 2014, 35, 2584-2591.	3.1	36
21	Quantification of vascular tortuosity as an early outcome measure in oxygen induced retinopathy (OIR). Experimental Eye Research, 2014, 120, 55-60.	2.6	27
22	Neural Retinal Regeneration with Pluripotent Stem Cells. Developments in Ophthalmology, 2014, 53, 97-110.	0.1	13
23	Patterns of Peripheral Retinal and Central Macula Ischemia in Diabetic Retinopathy as Evaluated by Ultra-widefield Fluorescein Angiography. American Journal of Ophthalmology, 2014, 158, 144-153.e1.	3.3	122
24	Expression of Neonatal Fc Receptor in the Eye. , 2014, 55, 1607.		54
25	Loss of Müller's Cells and Photoreceptors inÂMacular Telangiectasia TypeÂ2. Ophthalmology, 2013, 120, 2344-2352.	5.2	181
26	Development of human embryonic stem cell therapies for age-related macular degeneration. Trends in Neurosciences, 2013, 36, 385-395.	8.6	150
27	Stem cells in retinal regeneration: past, present and future. Development (Cambridge), 2013, 140, 2576-2585.	2.5	213
28	The Effects of Macular Ischemia on Visual Acuity in Diabetic Retinopathy. , 2013, 54, 2353.		138
29	Treatment with 670 nm Light Up Regulates Cytochrome C Oxidase Expression and Reduces Inflammation in an Age-Related Macular Degeneration Model. PLoS ONE, 2013, 8, e57828.	2.5	131
30	Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development. Development (Cambridge), 2012, 139, 2340-2350.	2.5	23
31	Visualization of gene expression in whole mouse retina by in situ hybridization. Nature Protocols, 2012, 7, 1086-1096.	12.0	25
32	Pilot Application of iTRAQ to the Retinal Disease Macular Telangiectasia. Journal of Proteome Research, 2012, 11, 537-553.	3.7	22
33	Basement membrane changes in capillaries of the ageing human retina. British Journal of Ophthalmology, 2011, 95, 1316-1322.	3.9	17
34	Perifoveal Müller Cell Depletion in a Case of Macular Telangiectasia Type 2. Ophthalmology, 2010, 117, 2407-2416.	5.2	234
35	Astrocyte-Derived Vascular Endothelial Growth Factor Stabilizes Vessels in the Developing Retinal Vasculature. PLoS ONE, 2010, 5, e11863.	2.5	120