Bethany A Bradley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9532890/publications.pdf

Version: 2024-02-01

83 papers 8,679 citations

43 h-index 80 g-index

83 all docs 83 docs citations

83 times ranked 9837 citing authors

#	Article	IF	CITATIONS
1	Global plant invaders: a compendium of invasive plant taxa documented by the peerâ€reviewed literature. Ecology, 2022, 103, e03569.	3.2	11
2	The human–grass–fire cycle: how people and invasives coâ€occur to drive fire regimes. Frontiers in Ecology and the Environment, 2022, 20, 117-126.	4.0	9
3	Breaking down barriers to consistent, climateâ€smart regulation of invasive plants: A case study of US Northeast states. Ecosphere, 2022, 13, .	2.2	7
4	Global environmental changes more frequently offset than intensify detrimental effects of biological invasions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	25
5	A synthesis of the effects of cheatgrass invasion on US Great Basin carbon storage. Journal of Applied Ecology, 2021, 58, 327-337.	4.0	26
6	Understanding the combined impacts of weeds and climate change on crops. Environmental Research Letters, 2021, 16, 034043.	5.2	22
7	Identifying high-impact invasive plants likely to shift into northern New England with climate change. Invasive Plant Science and Management, 2021, 14, 57-63.	1.1	4
8	Habitat covariates do not artificially cause a negative correlation between native and nonâ€native species richness. Ecology Letters, 2021, 24, 1735-1737.	6.4	0
9	Plant regulatory lists in the United States are reactive and inconsistent. Journal of Applied Ecology, 2021, 58, 1957-1966.	4.0	10
10	Translational invasion ecology: bridging research and practice to address one of the greatest threats to biodiversity. Biological Invasions, 2021, 23, 3323-3335.	2.4	11
11	Invaders for sale: the ongoing spread of invasive species by the plant trade industry. Frontiers in Ecology and the Environment, 2021, 19, 550-556.	4.0	34
12	Cover-based allometric estimate of aboveground biomass of a non-native, invasive annual grass (Bromus tectorum L.) in the Great Basin, USA. Journal of Arid Environments, 2021, 193, 104582.	2.4	2
13	Hotspots of invasive plant abundance are geographically distinct from hotspots of establishment. Biological Invasions, 2021, 23, 1249-1261.	2.4	10
14	Incorporating climate change into invasive species management: insights from managers. Biological Invasions, 2020, 22, 233-252.	2.4	83
15	Fire, livestock grazing, topography, and precipitation affect occurrence and prevalence of cheatgrass (Bromus tectorum) in the central Great Basin, USA. Biological Invasions, 2020, 22, 663-680.	2.4	48
16	Biotic resistance to invasion is ubiquitous across ecosystems of the United States. Ecology Letters, 2020, 23, 476-482.	6.4	92
17	In the Line of Fire: Consequences of Human-Ignited Wildfires to Homes in the U.S. (1992–2015). Fire, 2020, 3, 50.	2.8	55
18	Supporting proactive management in the context of climate change: prioritizing range-shifting invasive plants based on impact. Biological Invasions, 2020, 22, 2371-2383.	2.4	22

#	Article	IF	CITATIONS
19	Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts. Nature Climate Change, 2020, 10, 398-405.	18.8	116
20	Landscape characteristics of nonâ€native pine plantations and invasions in Southern Chile. Austral Ecology, 2019, 44, 1213-1224.	1.5	8
21	Accounting for aboveground carbon storage in shrubland and woodland ecosystems in the Great Basin. Ecosphere, 2019, 10, e02821.	2.2	11
22	Invasive grasses increase fire occurrence and frequency across US ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23594-23599.	7.1	141
23	Disentangling the abundance–impact relationship for invasive species. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9919-9924.	7.1	151
24	Detection rates and biases of fire observations from MODIS and agency reports in the conterminous United States. Remote Sensing of Environment, 2019, 220, 30-40.	11.0	34
25	Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions. Biological Invasions, 2018, 20, 1493-1506.	2.4	189
26	Multiâ€model comparison highlights consistency in predicted effect of warming on a semiâ€arid shrub. Global Change Biology, 2018, 24, 424-438.	9.5	47
27	Invasive species risk assessments need more consistent spatial abundance data. Ecosphere, 2018, 9, e02302.	2.2	27
28	Climate Change, Carbon Dioxide, and Pest Biology, Managing the Future: Coffee as a Case Study. Agronomy, 2018, 8, 152.	3.0	35
29	Human-Related Ignitions Increase the Number of Large Wildfires across U.S. Ecoregions. Fire, 2018, 1, 4.	2.8	82
30	Extensive gypsy moth defoliation in Southern New England characterized using Landsat satellite observations. Biological Invasions, 2018, 20, 3047-3053.	2.4	33
31	Human-related ignitions concurrent with high winds promote large wildfires across the USA. International Journal of Wildland Fire, 2018, 27, 377.	2.4	57
32	Human-started wildfires expand the fire niche across the United States. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2946-2951.	7.1	607
33	Frequency of invasive plant occurrence is not a suitable proxy for abundance in the Northeast United States. Ecosphere, 2017, 8, e01800.	2.2	9
34	Near-Real-Time Monitoring of Insect Defoliation Using Landsat Time Series. Forests, 2017, 8, 275.	2.1	42
35	Plant Distribution Data Show Broader Climatic Limits than Expert-Based Climatic Tolerance Estimates. PLoS ONE, 2016, 11, e0166407.	2.5	9
36	Scaling up the diversity–resilience relationship with traitÂdatabases and remote sensing data: the recovery ofÂproductivity after wildfire. Global Change Biology, 2016, 22, 1421-1432.	9.5	41

#	Article	IF	CITATIONS
37	Controls on interannual variability in lightning-caused fire activity in the western US. Environmental Research Letters, 2016, 11, 045005.	5.2	64
38	Quantifying the human influence on fire ignition across the western <scp>USA</scp> . Ecological Applications, 2016, 26, 2390-2401.	3.8	60
39	Out of the weeds? Reduced plant invasion risk with climate change in the continental United States. Biological Conservation, 2016, 203, 306-312.	4.1	82
40	Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, 2016, 7, 12485.	12.8	808
41	Plants' native distributions do not reflect climatic tolerance. Diversity and Distributions, 2016, 22, 615-624.	4.1	44
42	Predicting abundance with presence-only models. Landscape Ecology, 2016, 31, 19-30.	4.2	37
43	Bromus Response to Climate and Projected Changes with Climate Change. Springer Series on Environmental Management, 2016, , 257-274.	0.3	52
44	Will remote sensing shape the next generation of species distribution models?. Remote Sensing in Ecology and Conservation, 2015, 1, 4-18.	4.3	257
45	Climate Change May Alter Both Establishment and High Abundance of Red Brome (<i>Bromus) Tj ETQq1 1 0.7843 States. Invasive Plant Science and Management, 2015, 8, 341-352.</i>	314 rgBT /0 1.1	Overlock 10 13
46	Space to invade? Comparative range infilling and potential range of invasive and native plants. Global Ecology and Biogeography, 2015, 24, 348-359.	5.8	53
47	Using Changes in Agricultural Utility to Quantify Future Climateâ€Induced Risk to Conservation. Conservation Biology, 2014, 28, 427-437.	4.7	7
48	Resilience to Stress and Disturbance, and Resistance to Bromus tectorum L. Invasion in Cold Desert Shrublands of Western North America. Ecosystems, 2014, 17, 360-375.	3.4	336
49	Remote detection of invasive plants: a review of spectral, textural and phenological approaches. Biological Invasions, 2014, 16, 1411-1425.	2.4	187
50	How does the landscape context of occurrence data influence models of invasion risk? A comparison of independent datasets in Massachusetts, USA. Landscape Ecology, 2014, 29, 1601-1612.	4.2	6
51	Integrated assessment of biological invasions. Ecological Applications, 2014, 24, 25-37.	3.8	46
52	Projected climate impacts to <scp>S</scp> outh <scp>A</scp> frican maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches. Global Change Biology, 2013, 19, 3762-3774.	9.5	59
53	Introduced annual grass increases regional fire activity across the arid western <scp>USA</scp> (1980–2009). Global Change Biology, 2013, 19, 173-183.	9.5	521
54	Distribution models of invasive plants over-estimate potential impact. Biological Invasions, 2013, 15, 1417-1429.	2.4	66

#	Article	IF	CITATIONS
55	Comparing mechanistic and empirical model projections of crop suitability and productivity: implications for ecological forecasting. Global Ecology and Biogeography, 2013, 22, 1007-1018.	5.8	102
56	Accidental introductions are an important source of invasive plants in the continental United States. American Journal of Botany, 2013, 100, 1287-1293.	1.7	74
57	Will extreme climatic events facilitate biological invasions?. Frontiers in Ecology and the Environment, 2012, 10, 249-257.	4.0	402
58	Predicting how adaptation to climate change could affect ecological conservation: secondary impacts of shifting agricultural suitability. Diversity and Distributions, 2012, 18, 425-437.	4.1	50
59	Species detection vs. habitat suitability: Are we biasing habitat suitability models with remotely sensed data?. Ecological Modelling, 2012, 244, 57-64.	2.5	86
60	Global change, global trade, and the next wave of plant invasions. Frontiers in Ecology and the Environment, 2012, 10, 20-28.	4.0	195
61	Integrating Climate Change into Habitat Conservation Plans Under the U.S. Endangered Species Act. Environmental Management, 2012, 49, 1103-1114.	2.7	38
62	Using Expert Knowledge to Satisfy Data Needs: Mapping Invasive Plant Distributions in the Western United States. Western North American Naturalist, 2011, 71, 302-315.	0.4	18
63	How much is built? Quantifying and interpreting patterns of built space from different data sources. International Journal of Remote Sensing, 2011, 32, 2621-2644.	2.9	20
64	Assessing the short-term impacts of changing grazing regime at the landscape scale with remote sensing. International Journal of Remote Sensing, 2011, 32, 5797-5813.	2.9	28
65	Climate change increases risk of plant invasion in the Eastern United States. Biological Invasions, 2010, 12, 1855-1872.	2.4	233
66	Assessing ecosystem threats from global and regional change: hierarchical modeling of risk to sagebrush ecosystems from climate change, land use and invasive species in Nevada, USA. Ecography, 2010, 33, 198-208.	4.5	112
67	Predicting plant invasions in an era of global change. Trends in Ecology and Evolution, 2010, 25, 310-318.	8.7	531
68	Climate change: helping nature survive the human response. Conservation Letters, 2010, 3, 304-312.	5.7	84
69	Accuracy assessment of mixed land cover using a GISâ€designed sampling scheme. International Journal of Remote Sensing, 2009, 30, 3515-3529.	2.9	19
70	Regional analysis of the impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Global Change Biology, 2009, 15, 196-208.	9.5	209
71	Climate change and plant invasions: restoration opportunities ahead?. Global Change Biology, 2009, 15, 1511-1521.	9.5	215
72	When Invasive Plants Disappear: Transformative Restoration Possibilities in the Western United States Resulting from Climate Change. Restoration Ecology, 2009, 17, 715-721.	2.9	42

#	Article	IF	CITATIONS
73	A Novel, Web-Based, Ecosystem Mapping Tool Using Expert Opinion. Natural Areas Journal, 2009, 29, 281-292.	0.5	18
74	Comparison of phenology trends by land cover class: a case study in the Great Basin, USA. Global Change Biology, 2008, 14, 334-346.	9.5	109
75	Relationships between expanding pinyon–juniper cover and topography in the central Great Basin, Nevada. Journal of Biogeography, 2008, 35, 951-964.	3.0	41
76	Can remote sensing of land cover improve species distribution modelling?. Journal of Biogeography, 2008, 35, 1158-1159.	3.0	83
77	A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sensing of Environment, 2007, 106, 137-145.	11.0	308
78	Extracting Phenological Signals From Multiyear AVHRR NDVI Time Series: Framework for Applying High-Order Annual Splines With Roughness Damping. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 3264-3276.	6.3	82
79	Characterizing The Landscape Dynamics Of An Invasive Plant And Risk Of Invasion Using Remote Sensing., 2006, 16, 1132-1147.		216
80	Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Global Change Biology, 2006, 12, 1815-1822.	9.5	174
81	Identifying land cover variability distinct from land cover change: Cheatgrass in the Great Basin. Remote Sensing of Environment, 2005, 94, 204-213.	11.0	216
82	Medusae Fossae Formation: New perspectives from Mars Global Surveyor. Journal of Geophysical Research, 2002, 107, 2-1.	3.3	121
83	InvasiBES: Understanding and managing the impacts of Invasive alien species on Biodiversity and Ecosystem Services. NeoBiota, 0, 50, 109-122.	1.0	45