Marcelo Oscar Ortells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9532190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Is the Antidepressant Activity of Selective Serotonin Reuptake Inhibitors Mediated by Nicotinic Acetylcholine Receptors?. Molecules, 2021, 26, 2149.	3.8	10
2	(E)-3-furan-2-yl-N-phenylacrylamide (PAM-4) decreases nociception and emotional manifestations of neuropathic pain in mice by α7 nicotinic acetylcholine receptor potentiation. Neurological Research, 2021, 43, 1056-1068.	1.3	8
3	Alkaloids Purified from <i>Aristotelia chilensis</i> Inhibit the Human α3β4 Nicotinic Acetylcholine Receptor with Higher Potencies Compared with the Human α4β2 and α7 Subtypes. Journal of Natural Products, 2019, 82, 1953-1960.	3.0	14
4	Selectivity of (±)-citalopram at nicotinic acetylcholine receptors and different inhibitory mechanisms between habenular α3β4* and α9α10 subtypes. Neurochemistry International, 2019, 131, 104552.	3.8	3
5	Drimane Sesquiterpenoids Noncompetitively Inhibit Human α4β2 Nicotinic Acetylcholine Receptors with Higher Potency Compared to Human α3β4 and α7 Subtypes. Journal of Natural Products, 2018, 81, 811-817.	3.0	13
6	Tricyclic antidepressants inhibit hippocampal α7* and α9α10 nicotinic acetylcholine receptors by different mechanisms. International Journal of Biochemistry and Cell Biology, 2018, 100, 1-10.	2.8	10
7	Bupropion and its photoreactive analog (\hat{A} ±)-SADU-3-72 interact with luminal and non-luminal sites at human \hat{I} ±4 \hat{I} ² 2 nicotinic acetylcholine receptors. Neurochemistry International, 2016, 100, 67-77.	3.8	8
8	Molecular mechanisms of nicotine dependence. Journal of Pediatric Biochemistry, 2015, 01, 075-089.	0.2	0
9	Functional and structural interaction of (â^')-lobeline with human α4β2 and α4β4 nicotinic acetylcholine receptor subtypes. International Journal of Biochemistry and Cell Biology, 2015, 64, 15-24.	2.8	7
10	Novel 2-(substituted benzyl)quinuclidines inhibit human α7 and α4β2 nicotinic receptors by different mechanisms. International Journal of Biochemistry and Cell Biology, 2013, 45, 2420-2430.	2.8	17
11	(â^')-Reboxetine inhibits muscle nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites. Neurochemistry International, 2013, 63, 423-431.	3.8	3
12	Functional and Structural Interaction of (â^')-Reboxetine with the Human α4β2 Nicotinic Acetylcholine Receptor. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 113-123.	2.5	13
13	Tobacco addiction: A biochemical model of nicotine dependence. Medical Hypotheses, 2010, 74, 884-894.	1.5	19
14	Inhibitory mechanisms and binding site location for serotonin selective reuptake inhibitors on nicotinic acetylcholine receptors. International Journal of Biochemistry and Cell Biology, 2010, 42, 712-724.	2.8	35
15	Neuronal networks of nicotine addiction. International Journal of Biochemistry and Cell Biology, 2010, 42, 1931-1935.	2.8	32
16	Interaction of fluoxetine and paroxetine with muscle nicotinic acetylcholine receptors. FASEB Journal, 2010, 24, 986.16.	0.5	0
17	A model for the assembly of nicotinic receptors based on subunit–subunit interactions. Proteins: Structure, Function and Bioinformatics, 2008, 70, 473-488.	2.6	9
18	Molecular modelling of the interactions of carbamazepine and a nicotinic receptor involved in the autosomal dominant nocturnal frontal lobe epilepsy. British Journal of Pharmacology, 2002, 136, 883-895.	5.4	14

#	Article	IF	CITATIONS
19	Molecular Modeling of the Nicotinic Acetylcholine Receptor. , 1998, , 85-108.		3
20	Evolution of the AChR and Other Ligand-Gated Ion Channels. , 1998, , 11-30.		2
21	Screening Structural-Functional Relationships of Neuropharmacologically Active Organic Compounds at the Nicotonic Acetylcholine Receptor. Neuropharmacology, 1997, 36, 269-279.	4.1	4
22	Prediction of the secondary structure of the nicotinic acetylcholine receptor nontransmembrane regions. , 1997, 29, 391-398.		7
23	A mixed helix—beta-sheet model of the transmembrane region of the nicotinic acetylcholine receptor. Protein Engineering, Design and Selection, 1996, 9, 51-59.	2.1	40
24	Phylogenetic analysis of G-banded karyotypes among the South American subterranean rodents of the genus Ctenomys (Caviomorpha: Octodontidae), with special reference to chromosomal evolution and speciation. Biological Journal of the Linnean Society, 1995, 54, 43-70.	1.6	43
25	Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends in Neurosciences, 1995, 18, 121-127.	8.6	495
26	Ligands, Receptor Models, and Evolution. Annals of the New York Academy of Sciences, 1995, 757, 40-47.	3.8	9
27	A study of genetic distances and variability in several species of the genus Ctenomys (Rodentia:) Tj ETQq1 1 0.78 Biological Journal of the Linnean Society, 1994, 53, 189-208.	4314 rgBT 1.6	/Overlock 1 20
28	New studies on allozyme genetic distance and variability in akodontine rodents (Cricetidae) and their systematic implications. Biological Journal of the Linnean Society, 1993, 48, 283-298.	1.6	10
29	Homologies and disparities of glutamate receptors: A critical analysis. Neurochemistry International, 1993, 23, 583-594.	3.8	11
30	Predictions on ligand-gated ion-channels. Neurochemistry International, 1992, 21, S8.	3.8	0
31	Chromosomal polymorphism and small karyotypic differentiation in a group of Ctenomys species from Central Argentina (Rodentia: Octodontidae). Genetica, 1991, 83, 131-144.	1.1	66
32	New Ctenomys karyotypes (Rodentia, Octodontidae) from north-eastern Argentina and from Paraguay confirm the extreme chromosomal multiformity of the genus. Genetica, 1990, 82, 189-201.	1.1	42
33	Cytogenetics and karyosystematics of phyllotine rodents (Cricetidae, Sigmodontinae) I. Chromosome multiformity and gonosomal-autosomal translocation in Reithrodon. Genetica, 1988, 77, 53-63.	1.1	6