Senya B Shlosman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9531686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical prewetting in the 2d Ising model. Annals of Probability, 2022, 50, .	1.8	7
2	The Six Cylinders Problem: \$\$mathbb {D}_{3}\$\$-Symmetry Approach. Discrete and Computational Geometry, 2021, 65, 385-404.	0.6	6
3	Quantification of Hypoxia in Human Glioblastoma using PET with 18F-FMISO. Nuclear Medicine and Molecular Imaging, 2021, 55, 107-115.	1.0	2
4	Extremal Cylinder Configurations I: Configuration \$\$C_{mathfrak {m}}\$\$. Discrete and Computational Geometry, 2021, 66, 140-164.	0.6	2
5	Glassy States: The Free Ising Model on a Tree. Journal of Statistical Physics, 2020, 180, 227-237.	1.2	6
6	Brownian flights over a circle. Physical Review E, 2020, 102, 012124.	2.1	7
7	Extremal Cylinder Configurations II: Configuration O6. Experimental Mathematics, 2019, , 1-11.	0.7	5
8	Analysis of hypoxia in human glioblastoma tumors with dynamic 18F-FMISO PET imaging. Australasian Physical and Engineering Sciences in Medicine, 2019, 42, 981-993.	1.3	10
9	Classical and Quantum Dynamics of a Particle in a Narrow Angle. Regular and Chaotic Dynamics, 2019, 24, 704-716.	0.8	3
10	Anomalous one-dimensional fluctuations of a simple two-dimensional random walk in a large-deviation regime. Physical Review E, 2019, 99, 012110.	2.1	18
11	Metastability of Queuing Networks with Mobile Servers. Journal of Statistical Physics, 2018, 173, 1227-1251.	1.2	5
12	A Continuum of Pure States in the Ising Model on a Halfplane. Journal of Statistical Physics, 2018, 172, 611-626.	1.2	1
13	Asymptotics of Wave Functions of the Stationary Schrödinger Equation in the Weyl Chamber. Theoretical and Mathematical Physics(Russian Federation), 2018, 197, 1626-1634.	0.9	9
14	Propagation of Chaos and Poisson Hypothesis. Problems of Information Transmission, 2018, 54, 290-299.	0.5	1
15	Configuration Spaces of Equal Spheres Touching a Given Sphere: The Twelve Spheres Problem. Bolyai Society Mathematical Studies, 2018, , 219-277.	0.3	6
16	Topological Tverberg Theorem: the proofs and the counterexamples. Russian Mathematical Surveys, 2018, 73, 355-362.	0.6	2
17	Plane Partitions and Their Pedestal Polynomials. Mathematical Notes, 2018, 103, 793-796.	0.4	0
18	Crystals in the Void. Journal of Statistical Physics, 2017, 169, 472-479.	1.2	0

#	Article	IF	CITATIONS
19	Poisson Hypothesis for Open Networks at Low Load. Moscow Mathematical Journal, 2017, 17, 145-160.	0.4	1
20	Queueing networks with mobile servers: The mean-field approach. Problems of Information Transmission, 2016, 52, 178-199.	0.5	3
21	A Manifold of Pure Gibbs States of the Ising Model on the Lobachevsky Plane. Communications in Mathematical Physics, 2015, 334, 313-330.	2.2	8
22	An Invariance Principle to Ferrari–Spohn Diffusions. Communications in Mathematical Physics, 2015, 336, 905-932.	2.2	25
23	Interaction Versus Entropic Repulsion for Low Temperature Ising Polymers. Journal of Statistical Physics, 2015, 158, 1007-1050.	1.2	13
24	Can reliable memory be composed of error-prone elements?. Automation and Remote Control, 2013, 74, 1614-1619.	0.8	0
25	A Manifold of Pure Gibbs States of the Ising Model on a Cayley Tree. Journal of Statistical Physics, 2012, 148, 999-1005.	1.2	23
26	From the seminar on Mathematical Statistical Physics in Moscow State University, 1962–1994. Gibbs random fields on the lattice. Definitions, existence, uniqueness. European Physical Journal H, 2012, 37, 571-594.	0.8	0
27	From the seminar on Mathematical Statistical Physics in Moscow State University, 1962–1994. Constructive criteria. European Physical Journal H, 2012, 37, 595-603.	0.8	Ο
28	From the seminar on Mathematical Statistical Physics in Moscow State University, 1962–1994. Contour technics. European Physical Journal H, 2012, 37, 619-637.	0.8	2
29	Rotating States in Driven Clock- and XY-Models. Journal of Statistical Physics, 2011, 144, 1238-1246.	1.2	10
30	Gibbs Ensembles of Nonintersecting Paths. Communications in Mathematical Physics, 2010, 293, 145-170.	2.2	16
31	The characterization of ground states. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 305001.	2.1	4
32	Ising fog drip: the shallow puddle, o(N) deep. Actes Des Rencontres Du CIRM, 2010, 2, 31-36.	0.0	1
33	Spontaneous Resonances and the Coherent States ofÂtheÂQueuing Networks. Journal of Statistical Physics, 2009, 134, 67-104.	1.2	16
34	Ising Model Fog Drip: The First Two Droplets. Progress in Probability, 2008, , 365-381.	0.3	5
35	Phase Transitions in the Queuing Networks and the Violation of the Poisson Hypothesis. Moscow Mathematical Journal, 2008, 8, 159-180.	0.4	3
36	Dobrushin Interfaces via Reflection Positivity. Communications in Mathematical Physics, 2007, 276, 827-861.	2.2	3

#	Article	IF	CITATIONS
37	Self-averaging property of queuing systems. Problems of Information Transmission, 2006, 42, 344-355.	0.5	1
38	3D Crystal: How Flat its Flat Facets Are?. Communications in Mathematical Physics, 2005, 255, 747-766.	2.2	8
39	Provable First-Order Transitions for Nonlinear Vector and Gauge Models with Continuous Symmetries. Communications in Mathematical Physics, 2005, 255, 21-32.	2.2	44
40	Poisson Hypothesis: Combinatorial Aspect. Problems of Information Transmission, 2005, 41, 230-236.	0.5	1
41	Poisson Hypothesis for Information Networks. I. Moscow Mathematical Journal, 2005, 5, 679-704.	0.4	12
42	Magnetostriction Transition. Journal of Statistical Physics, 2004, 114, 563-574.	1.2	2
43	First-Order Transitions forn-Vector Models in Two and More Dimensions: Rigorous Proof. Physical Review Letters, 2002, 89, 285702.	7.8	64
44	2D Models of Statistical Physics with Continuous Symmetry: The Case of Singular Interactions. Communications in Mathematical Physics, 2002, 226, 433-454.	2.2	44
45	The Wulff construction in statistical mechanics and combinatorics. Russian Mathematical Surveys, 2001, 56, 709-738.	0.6	13
46	Rigidity of the Critical Phases on a Cayley Tree. Moscow Mathematical Journal, 2001, 1, 345-363.	0.4	27
47	Discontinuity of the Magnetization in Diluted O(n)-Models. Journal of Statistical Physics, 2000, 98, 537-549.	1.2	11
48	Percolation, Path Large Deviations and Weakly Gibbs States. Communications in Mathematical Physics, 2000, 209, 517-545.	2.2	19
49	Geometric variational problems of statistical mechanics and of combinatorics. Journal of Mathematical Physics, 2000, 41, 1364-1370.	1.1	10
50	Metastable states: smooth continuations through the critical point. Physica A: Statistical Mechanics and Its Applications, 1999, 263, 180-186.	2.6	5
51	"Non-Gibbsian" States and their Gibbs Description. Communications in Mathematical Physics, 1999, 200, 125-179.	2.2	27
52	Freezing transition in the Ising model without internal contours. Probability Theory and Related Fields, 1999, 115, 479-503.	1.8	3
53	(Almost) Gibbsian Description of the Sign Fields of SOS Fields. Journal of Statistical Physics, 1998, 92, 353-368.	1.2	8
54	Wulff Droplets and the Metastable Relaxation of Kinetic Ising Models. Communications in Mathematical Physics, 1998, 194, 389-462.	2.2	81

#	Article	IF	CITATIONS
55	Gibbsian description of `non-Gibbsian' fields. Russian Mathematical Surveys, 1997, 52, 285-297.	0.6	12
56	Complete Analyticity of the 2D Potts Model above the Critical Temperature. Communications in Mathematical Physics, 1997, 189, 373-393.	2.2	7
57	Staggered Phases in Diluted Systems with Continuous Spins. Communications in Mathematical Physics, 1997, 189, 631-640.	2.2	13
58	Constrained variational problem with applications to the Ising model. Journal of Statistical Physics, 1996, 83, 867-905.	1.2	39
59	Roland L. Dobrushin (1929–1995). Ergodic Theory and Dynamical Systems, 1996, 16, 863-869.	0.6	О
60	Aggregation and intermediate phases in dilute spin systems. Communications in Mathematical Physics, 1995, 171, 203-232.	2.2	21
61	Complete analyticity for 2D Ising completed. Communications in Mathematical Physics, 1995, 170, 453-482.	2.2	61
62	Droplet Condensation in the Ising Model: Moderate Deviations Point of View. , 1994, , 17-34.		2
63	A microscopic justification of the Wulff construction. Journal of Statistical Physics, 1993, 72, 1-14.	1.2	10
64	When is an interacting particle system ergodic?. Communications in Mathematical Physics, 1993, 151, 447-466.	2.2	18
65	Constructive Criteria for the Ergodicity of Interacting Particle Systems. , 1993, , 451-461.		0
66	Ergodicity of probabilistic cellular automata: A constructive criterion. Communications in Mathematical Physics, 1991, 135, 233-251.	2.2	28
67	Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation. Communications in Mathematical Physics, 1991, 140, 81-91.	2.2	87
68	Interfaces in the Potts model II: Antonov's rule and rigidity of the order disorder interface. Communications in Mathematical Physics, 1991, 140, 275-290.	2.2	26
69	Roland L'vovich Dobrushin (on his sixtieth birthday). Russian Mathematical Surveys, 1989, 44, 197-199.	0.6	0
70	The droplet in the tube: A case of phase transition in the canonical ensemble. Communications in Mathematical Physics, 1989, 125, 81-90.	2.2	38
71	Gauge-invariant specification of gauge fields. Theoretical and Mathematical Physics(Russian) Tj ETQq1 1 0.7843	14 rgBT /(0.9	Overlock 10 Tf
72	Completely analytical interactions: Constructive description. Journal of Statistical Physics, 1987, 46, 983-1014.	1.2	124

#	Article	IF	CITATIONS
73	Low-temperature phase transitions in systems with one ground state. Theoretical and Mathematical Physics(Russian Federation), 1987, 70, 325-330.	0.9	6
74	Signs of the Ising model Ursell functions. Communications in Mathematical Physics, 1986, 102, 679-686.	2.2	19
75	Uniqueness and half-space nonuniqueness of gibbs states in Czech models. Theoretical and Mathematical Physics(Russian Federation), 1986, 66, 284-293.	0.9	26
76	Unusual analytic properties of some lattice models: Complement of Lee-Yang theory. Theoretical and Mathematical Physics(Russian Federation), 1986, 69, 1147-1150.	0.9	6
77	The method of reflection positivity in the mathematical theory of first-order phase transitions. Russian Mathematical Surveys, 1986, 41, 83-134.	0.6	33
78	Phase diagram of the two-dimensional Ising antiferromagnet (computer-assisted proof). Communications in Mathematical Physics, 1985, 102, 89-103.	2.2	29
79	Reflection positivity and models with noncompact spin. Theoretical and Mathematical Physics(Russian) Tj ETQc	1 1 0.7843	814.rgBT /Ove
80	Non-translation-invariant states in two dimensions. Communications in Mathematical Physics, 1983, 87, 497-504.	2.2	4
81	First-order phase transitions in large entropy lattice models. Communications in Mathematical Physics, 1982, 83, 493-515.	2.2	125
82	Correlation inequalities for antiferromagnets. Journal of Statistical Physics, 1980, 22, 59-64.	1.2	2
83	Phase transitions for two-dimensional models with isotropic short-range interactions and continuous symmetries. Communications in Mathematical Physics, 1980, 71, 207-212.	2.2	18
84	Decrease of correlations in two-dimensional models with continuous symmetry group. Theoretical and Mathematical Physics(Russian Federation), 1978, 37, 1118-1120.	0.9	8
85	Absence of continuous symmetry breaking in two-dimensional models of statistical physics. Theoretical and Mathematical Physics(Russian Federation), 1977, 33, 897-902.	0.9	7
86	Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics. Communications in Mathematical Physics, 1975, 42, 31-40.	2.2	104