Frances S Ligler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9531332/publications.pdf Version: 2024-02-01

2081paperscit	3,504	65	108
	ations	h-index	g-index
211	211	211	12383
all docs docs	citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow. Biofabrication, 2022, 14, 025007.	7.1	6
2	Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nature Biotechnology, 2022, 40, 1250-1258.	17.5	63
3	Review of analytical performance of COVID-19 detection methods. Analytical and Bioanalytical Chemistry, 2021, 413, 35-48.	3.7	161
4	Microphysiological System for High-Throughput Computer Vision Measurement of Microtissue Contraction. ACS Sensors, 2021, 6, 985-994.	7.8	5
5	Synthesis of sonicated fibrin nanoparticles that modulate fibrin clot polymerization and enhance angiogenic responses. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111805.	5.0	1
6	Enhancement of Bone Regeneration Through the Converse Piezoelectric Effect, A Novel Approach for Applying Mechanical Stimulation. Bioelectricity, 2021, 3, 255-271.	1.1	24
7	Fibrin gel enhances the antitumor effects of chimeric antigen receptor T cells in glioblastoma. Science Advances, 2021, 7, eabg5841.	10.3	35
8	Cardiac Stromal Cell Patch Integrated with Engineered Microvessels Improves Recovery from Myocardial Infarction in Rats and Pigs. ACS Biomaterials Science and Engineering, 2020, 6, 6309-6320.	5.2	25
9	Virus Detection: What Were We Doing before COVID-19 Changed the World?. ACS Sensors, 2020, 5, 1503-1504.	7.8	2
10	Scaffoldâ€Mediated Static Transduction of T Cells for CARâ€T Cell Therapy. Advanced Healthcare Materials, 2020, 9, e2000275.	7.6	15
11	High-Throughput Manufacture of 3D Fiber Scaffolds for Regenerative Medicine. Tissue Engineering - Part C: Methods, 2020, 26, 364-374.	2.1	12
12	Microfluidics for the study of mechanotransduction. Journal Physics D: Applied Physics, 2020, 53, 224004.	2.8	21
13	Three-dimensional imaging of intact porcine cochlea using tissue clearing and custom-built light-sheet microscopy. Biomedical Optics Express, 2020, 11, 6181.	2.9	20
14	A simple cantilever system for measurement of flow rates in paper microfluidic devices. Engineering Research Express, 2019, 1, 025019.	1.6	2
15	Lighting Up Biosensors: Now and the Decade To Come. Analytical Chemistry, 2019, 91, 8732-8738.	6.5	50
16	Photothermal Therapy: Photothermal Therapy Promotes Tumor Infiltration and Antitumor Activity of CAR T Cells (Adv. Mater. 23/2019). Advanced Materials, 2019, 31, 1970166.	21.0	18
17	Photothermal Therapy Promotes Tumor Infiltration and Antitumor Activity of CAR T Cells. Advanced Materials, 2019, 31, e1900192.	21.0	291
18	Characterization of glass frit capillary pumps for microfluidic devices. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	5

#	Article	IF	CITATIONS
19	Paper-based passive pumps to generate controllable whole blood flow through microfluidic devices. Lab on A Chip, 2019, 19, 3787-3795.	6.0	16
20	Fibrin Nanoparticles Coupled with Keratinocyte Growth Factor Enhance the Dermal Wound-Healing Rate. ACS Applied Materials & Interfaces, 2019, 11, 3771-3780.	8.0	33
21	Plateletâ€ I nspired Nanocells for Targeted Heart Repair After Ischemia/Reperfusion Injury. Advanced Functional Materials, 2019, 29, 1803567.	14.9	92
22	Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nature Chemical Biology, 2018, 14, 86-93.	8.0	184
23	Strategies to Close the Gender Gap in Invention and Technology Commercialization. Technology and Innovation, 2018, 19, 701-706.	0.2	5
24	The NAI Fellow Profile: An Interview With Dr. Frances Ligler. Technology and Innovation, 2018, 19, 645-651.	0.2	0
25	Cardiac Stem Cell Patch Integrated with Microengineered Blood Vessels Promotes Cardiomyocyte Proliferation and Neovascularization after Acute Myocardial Infarction. ACS Applied Materials & Interfaces, 2018, 10, 33088-33096.	8.0	66
26	Hypoxia and H ₂ O ₂ Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery. Nano Letters, 2017, 17, 733-739.	9.1	220
27	Dual Wavelength-Triggered Gold Nanorods for Anticancer Treatment. Methods in Molecular Biology, 2017, 1570, 195-208.	0.9	1
28	Modular pumps as programmable hydraulic batteries for microfluidic devices. Technology, 2017, 05, 21-30.	1.4	21
29	Microfabricated blood vessels undergo neoangiogenesis. Biomaterials, 2017, 138, 142-152.	11.4	37
30	Time-Dependent Model for Fluid Flow in Porous Materials with Multiple Pore Sizes. Analytical Chemistry, 2017, 89, 4377-4381.	6.5	67
31	Leveraging H ₂ O ₂ Levels for Biomedical Applications. Advanced Biology, 2017, 1, e1700084.	3.0	66
32	"Data characterizing microfabricated human blood vessels created via hydrodynamic focusing― Data in Brief, 2017, 14, 156-162.	1.0	4
33	Characterizing the swelling of gelatin methacrylamide and effects on microscale tissue scaffold fabrication. , 2017, , .		1
34	Nanosecond Timeâ€Resolution Study of Gold Nanorod Rotation at the Liquid–Solid Interface. ChemPhysChem, 2016, 17, 2218-2224.	2.1	5
35	Microvessel manifold for perfusion and media exchange in three-dimensional cell cultures. Biomicrofluidics, 2016, 10, 054109.	2.4	11
36	Mechanical and Vascular Cues Synergistically Enhance Osteogenesis in Human Mesenchymal Stem Cells. Tissue Engineering - Part A, 2016, 22, 997-1005.	3.1	12

#	Article	IF	CITATIONS
37	Signal amplification strategies for microfluidic immunoassays. TrAC - Trends in Analytical Chemistry, 2016, 79, 326-334.	11.4	41
38	Point-of-care diagnostics for niche applications. Biotechnology Advances, 2016, 34, 161-176.	11.7	50
39	Evanescent wave fluorescence biosensors: Advances of the last decade. Biosensors and Bioelectronics, 2016, 76, 103-112.	10.1	115
40	Continuous-Wave Stimulated Emission Depletion Microscope for Imaging Actin Cytoskeleton in Fixed and Live Cells. Sensors, 2015, 15, 24178-24190.	3.8	11
41	Bispecific antibodies, nanoparticles and cells: bringing the right cells to get the job done. Expert Opinion on Biological Therapy, 2015, 15, 1251-1255.	3.1	10
42	Transformable liquid-metal nanomedicine. Nature Communications, 2015, 6, 10066.	12.8	466
43	Programmable nanomedicine: synergistic and sequential drug delivery systems. Nanoscale, 2015, 7, 3381-3391.	5.6	126
44	Microfluidics: Microfluidic Strategies for Design and Assembly of Microfibers and Nanofibers with Tissue Engineering and Regenerative Medicine Applications (Adv. Healthcare Mater. 1/2015). Advanced Healthcare Materials, 2015, 4, 2-2.	7.6	5
45	Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8260-8265.	7.1	655
46	The Scope of Analytical Chemistry. Analytical Chemistry, 2015, 87, 6425-6425.	6.5	4
47	A dual wavelength-activatable gold nanorod complex for synergistic cancer treatment. Nanoscale, 2015, 7, 12096-12103.	5.6	41
48	A temperature microsensor for measuring laser-induced heating in gold nanorods. Analytical and Bioanalytical Chemistry, 2015, 407, 719-725.	3.7	15
49	3D hydrodynamic focusing microfluidics for emerging sensing technologies. Biosensors and Bioelectronics, 2015, 67, 25-34.	10.1	57
50	Microfluidic Strategies for Design and Assembly of Microfibers and Nanofibers with Tissue Engineering and Regenerative Medicine Applications. Advanced Healthcare Materials, 2015, 4, 11-28.	7.6	137
51	Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging. Journal of Biomedical Optics, 2014, 19, 080901.	2.6	24
52	Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials, 2014, 35, 1845-1856.	11.4	207
53	Small-Molecule Detection in Thiol–Yne Nanocomposites via Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2014, 86, 12315-12320.	6.5	13
54	Self-folded redox/acid dual-responsive nanocarriers for anticancer drug delivery. Chemical Communications, 2014, 50, 15105-15108.	4.1	23

#	Article	IF	CITATIONS
55	Facile Fabrication of Color Tunable Film and Fiber Nanocomposites via Thiol Click Chemistry. Macromolecules, 2014, 47, 695-704.	4.8	23
56	Microfluidic fabrication of multiaxial microvessels via hydrodynamic shaping. RSC Advances, 2014, 4, 23440-23446.	3.6	30
57	Microfluidic Fabrication of Polymeric and Biohybrid Fibers with Predesigned Size and Shape. Journal of Visualized Experiments, 2014, , e50958.	0.3	8
58	Simultaneous assay for ten bacteria and toxins in spiked clinical samples using a microflow cytometer. Analytical and Bioanalytical Chemistry, 2013, 405, 5611-5614.	3.7	15
59	Design and fabrication of uniquely shaped thiol–ene microfibers using a two-stage hydrodynamic focusing design. Lab on A Chip, 2013, 13, 3105.	6.0	42
60	Nanomaterials in Analytical Chemistry. Analytical Chemistry, 2013, 85, 11161-11162.	6.5	18
61	Chemical and biological detection. Chemical Society Reviews, 2013, 42, 8581.	38.1	7
62	Hydrodynamic Shaping, Polymerization, and Subsequent Modification of Thiol Click Fibers. ACS Applied Materials & Interfaces, 2013, 5, 114-119.	8.0	37
63	Catch and Release: Integrated System for Multiplexed Detection of Bacteria. Analytical Chemistry, 2013, 85, 4944-4950.	6.5	34
64	Rapid and Continuous Hydrodynamically Controlled Fabrication of Biohybrid Microfibers. Advanced Functional Materials, 2013, 23, 698-704.	14.9	52
65	Microfabrication: Rapid and Continuous Hydrodynamically Controlled Fabrication of Biohybrid Microfibers (Adv. Funct. Mater. 6/2013). Advanced Functional Materials, 2013, 23, 697-697.	14.9	2
66	Hydrodynamically directed multiscale assembly of shaped polymer fibers. Soft Matter, 2012, 8, 6656.	2.7	23
67	Spinning magnetic trap for automated microfluidic assay systems. Lab on A Chip, 2012, 12, 1793.	6.0	36
68	<i>In Situ</i> Phytoplankton Analysis: There's Plenty of Room at the Bottom. Analytical Chemistry, 2012, 84, 839-850.	6.5	39
69	Rapid Analytical Methods for On-Site Triage for Traumatic Brain Injury. Annual Review of Analytical Chemistry, 2012, 5, 35-56.	5.4	34
70	Hydrodynamic focusing for impedance-based detection of specifically bound microparticles and cells: Implications of fluid dynamics on tunable sensitivity. Sensors and Actuators B: Chemical, 2012, 166-167, 386-393.	7.8	12
71	Hydrodynamic focusing—a versatile tool. Analytical and Bioanalytical Chemistry, 2012, 402, 325-335.	3.7	56
72	UV polymerization of hydrodynamically shaped fibers. Lab on A Chip, 2011, 11, 1157.	6.0	39

#	Article	IF	CITATIONS
73	Iron chelation by cranberry juice and its impact on Escherichia coli growth. BioFactors, 2011, 37, 121-130.	5.4	22
74	Parameters affecting the shape of a hydrodynamically focused stream. Microfluidics and Nanofluidics, 2011, 11, 119-128.	2.2	21
75	Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device. Analytical and Bioanalytical Chemistry, 2011, 400, 1347-1358.	3.7	10
76	Microflow Cytometer for optical analysis of phytoplankton. Biosensors and Bioelectronics, 2011, 26, 4263-4269.	10.1	69
77	Optimization of antibody-conjugated magnetic nanoparticles for target preconcentration and immunoassays. Analytical Biochemistry, 2011, 410, 124-132.	2.4	48
78	Optofluidic characterization of marine algae using a microflow cytometer. Biomicrofluidics, 2011, 5, 32009-320099.	2.4	79
79	Utilization of microparticles in next-generation assays for microflow cytometers. Analytical and Bioanalytical Chemistry, 2010, 398, 2373-2382.	3.7	24
80	A hard microflow cytometer using groove-generated sheath flow for multiplexed bead and cell assays. Analytical and Bioanalytical Chemistry, 2010, 398, 1871-1881.	3.7	27
81	Multiplexed magnetic microsphere immunoassays for detection of pathogens in foods. Sensing and Instrumentation for Food Quality and Safety, 2010, 4, 73-81.	1.5	48
82	Hydrodynamic focusing of conducting fluids for conductivity-based biosensors. Biosensors and Bioelectronics, 2010, 25, 1363-1369.	10.1	26
83	Effect of diffusion on impedance measurements in a hydrodynamic flow focusing sensor. Lab on A Chip, 2010, 10, 2787.	6.0	15
84	Dynamic reversibility of hydrodynamic focusing for recycling sheath fluid. Lab on A Chip, 2010, 10, 1952.	6.0	31
85	Organic Photodiodes for Biosensor Miniaturization. Analytical Chemistry, 2009, 81, 3455-3461.	6.5	69
86	Multiplexed Detection of Bacteria and Toxins Using a Microflow Cytometer. Analytical Chemistry, 2009, 81, 5426-5432.	6.5	101
87	A simple sheath-flow microfluidic device for micro/nanomanufacturing: fabrication of hydrodynamically shaped polymer fibers. Lab on A Chip, 2009, 9, 3126.	6.0	76
88	Multi-wavelength microflow cytometer using groove-generated sheath flow. Lab on A Chip, 2009, 9, 1942.	6.0	140
89	Perspective on Optical Biosensors and Integrated Sensor Systems. Analytical Chemistry, 2009, 81, 519-526.	6.5	217
90	The good, the bad, and the tiny: a review of microflow cytometry. Analytical and Bioanalytical Chemistry, 2008, 391, 1485-1498.	3.7	216

#	Article	IF	CITATIONS
91	Home diagnostics to music. Nature, 2008, 456, 178-179.	27.8	22
92	Immobilized Proanthocyanidins for the Capture of Bacterial Lipopolysaccharides. Analytical Chemistry, 2008, 80, 2113-2117.	6.5	28
93	Impact of cranberry on Escherichia coli cellular surface characteristics. Biochemical and Biophysical Research Communications, 2008, 377, 992-994.	2.1	23
94	Two simple and rugged designs for creating microfluidic sheath flow. Lab on A Chip, 2008, 8, 1097.	6.0	110
95	A combinatorial approach to microfluidic mixing. Journal of Micromechanics and Microengineering, 2008, 18, 115019.	2.6	20
96	Array Biosensor for Toxin Detection: Continued Advances. Sensors, 2008, 8, 8361-8377.	3.8	56
97	New Biological Activities of Plant Proanthocyanidins. ACS Symposium Series, 2008, , 101-114.	0.5	0
98	Fabrication and Characterization of Silicon Micro-Funnels and Tapered Micro-Channels for Stochastic Sensing Applications. Sensors, 2008, 8, 3848-3872.	3.8	15
99	Incorporation of18Oxygen into Peptide Mixtures and Analysis with Multiâ€Dimensional Chromatography and Massâ€5pectroscopy. Analytical Letters, 2007, 40, 1864-1878.	1.8	7
100	The Array Biosensor: Portable, Automated Systems. Analytical Sciences, 2007, 23, 5-10.	1.6	128
101	Antimicrobial Peptides: New Recognition Molecules for Detecting Botulinum Toxins. Sensors, 2007, 7, 2808-2824.	3.8	27
102	Blind Laboratory Trials for Multiple Pathogens in Spiked Food Matrices. Analytical Letters, 2007, 40, 3219-3231.	1.8	14
103	Binding and Neutralization of Lipopolysaccharides by Plant Proanthocyanidins. Journal of Natural Products, 2007, 70, 1718-1724.	3.0	58
104	Combination of Immunosensor Detection with Viability Testing and Confirmation Using the Polymerase Chain Reaction and Culture. Analytical Chemistry, 2007, 79, 140-146.	6.5	13
105	Target delivery in a microfluidic immunosensor. Biosensors and Bioelectronics, 2007, 22, 2763-2767.	10.1	60
106	Antimicrobial peptides as new recognition molecules for screening challenging species. Sensors and Actuators B: Chemical, 2007, 121, 150-157.	7.8	63
107	Laser ablation of micropores for formation of artificial planar lipid bilayers. Biomedical Microdevices, 2007, 9, 863-868.	2.8	23
108	Crosslinkers Modify Affinity of Immobilized Carbohydrates for Cholera Toxin. Sensor Letters, 2007, 5, 621-624.	0.4	8

#	Article	IF	CITATIONS
109	Application of Broad-Spectrum, Sequence-Based Pathogen Identification in an Urban Population. PLoS ONE, 2007, 2, e419.	2.5	33
110	Detection of Deoxynivalenol in Foods and Indoor Air Using an Array Biosensor. Environmental Science & Technology, 2006, 40, 2352-2356.	10.0	74
111	Toolbox for the design of optimized microfluidic components. Lab on A Chip, 2006, 6, 540.	6.0	47
112	Prevention of Nonspecific Bacterial Cell Adhesion in Immunoassays by Use of Cranberry Juice. Analytical Chemistry, 2006, 78, 853-857.	6.5	45
113	Multiplexed Detection of Mycotoxins in Foods with a Regenerable Arrayâ€. Journal of Food Protection, 2006, 69, 3047-3051.	1.7	38
114	Diagnosis on disc. Nature, 2006, 440, 159-160.	27.8	14
115	A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation: Application as an immunoassay tracer. Biosensors and Bioelectronics, 2006, 21, 1668-1673.	10.1	80
116	Simultaneous determination of kinetic parameters for the binding of cholera toxin to immobilized sialic acid and monoclonal antibody using an array biosensor. Biosensors and Bioelectronics, 2006, 22, 124-130.	10.1	21
117	Multiplexed measurement of serum antibodies using an array biosensor. Biosensors and Bioelectronics, 2006, 21, 1880-1886.	10.1	48
118	Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosensors and Bioelectronics, 2006, 21, 1932-1942.	10.1	307
119	Antimicrobial peptide-based array for Escherichia coli and Salmonella screening. Analytica Chimica Acta, 2006, 575, 9-15.	5.4	101
120	Rapid detection of foodborne contaminants using an Array Biosensor. Sensors and Actuators B: Chemical, 2006, 113, 599-607.	7.8	103
121	Detection of bacterial toxins with monosaccharide arrays. Biosensors and Bioelectronics, 2006, 21, 1195-1201.	10.1	70
122	Evanescent wave fluorescence biosensors. Biosensors and Bioelectronics, 2005, 20, 2470-2487.	10.1	260
123	Biosensor Detection of Botulinum Toxoid A and Staphylococcal Enterotoxin B in Food. Applied and Environmental Microbiology, 2005, 71, 5590-5592.	3.1	97
124	Array Biosensor for Detection of Ochratoxin A in Cereals and Beverages. Analytical Chemistry, 2005, 77, 148-154.	6.5	126
125	A portable automated multianalyte biosensor. Talanta, 2005, 65, 1078-1085.	5.5	53
126	Antimicrobial Peptides for Detection of Bacteria in Biosensor Assays. Analytical Chemistry, 2005, 77, 6504-6508.	6.5	162

#	Article	IF	CITATIONS
127	A microfluidic mixer with grooves placed on the top and bottom of the channel. Lab on A Chip, 2005, 5, 524.	6.0	127
128	Real-time analysis of protein adsorption to a variety of thin films. Biosensors and Bioelectronics, 2004, 19, 1045-1055.	10.1	105
129	Design and evaluation of a Dean vortex-based micromixer. Lab on A Chip, 2004, 4, 663.	6.0	108
130	Detection of Salmonella enterica Serovar Typhimurium by Using a Rapid, Array-Based Immunosensor. Applied and Environmental Microbiology, 2004, 70, 152-158.	3.1	92
131	Detection ofCampylobacterandShigellaSpecies in Food Samples Using an Array Biosensor. Analytical Chemistry, 2004, 76, 433-440.	6.5	98
132	Colored Thin Films for Specific Metal Ion Detection. Environmental Science & Technology, 2004, 38, 4409-4413.	10.0	33
133	Array biosensor for detection of toxins. Analytical and Bioanalytical Chemistry, 2003, 377, 469-477.	3.7	268
134	Color changes in chitosan and poly(allyl amine) films upon metal binding. Thin Solid Films, 2003, 434, 250-257.	1.8	62
135	Detection of Staphylococcal Enterotoxin B in Spiked Food Samplesâ€. Journal of Food Protection, 2003, 66, 1851-1856.	1.7	62
136	Method for Printing Functional Protein Microarrays. BioTechniques, 2003, 34, 380-385.	1.8	75
137	Cross-linked Chitosan and Poly(allyl amine) Thin Films. Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	1
138	A Microarray Immunoassay for Simultaneous Detection of Proteins and Bacteria. Analytical Chemistry, 2002, 74, 5681-5687.	6.5	323
139	Demonstration of Four Immunoassay Formats Using the Array Biosensor. Analytical Chemistry, 2002, 74, 1061-1068.	6.5	128
140	Integrating Waveguide Biosensor. Analytical Chemistry, 2002, 74, 713-719.	6.5	93
141	Nine-Analyte Detection Using an Array-Based Biosensor. Analytical Chemistry, 2002, 74, 6114-6120.	6.5	145
142	Attachment of plastic fluidic components to glass sensing surfaces. Biosensors and Bioelectronics, 2002, 17, 105-110.	10.1	13
143	Fabrication of a capillary immunosensor in polymethyl methacrylate. Biosensors and Bioelectronics, 2002, 17, 95-103.	10.1	44
144	Voltage-induced inhibition of antigen-antibody binding at conducting optical waveguides. Biosensors and Bioelectronics, 2002, 17, 489-494.	10.1	29

#	Article	IF	CITATIONS
145	A comparison of imaging methods for use in an array biosensor. Biosensors and Bioelectronics, 2002, 17, 719-725.	10.1	59
146	Development of Uniform Chitosan Thin-Film Layers on Silicon Chips. Langmuir, 2001, 17, 5082-5084.	3.5	56
147	Fluidics Cube for Biosensor Miniaturization. Analytical Chemistry, 2001, 73, 3776-3780.	6.5	20
148	Kinetics of Antigen Binding to Arrays of Antibodies in Different Sized Spots. Analytical Chemistry, 2001, 73, 5518-5524.	6.5	89
149	Continuous Flow Displacement Immunosensors: A Computational Study. Analytical Biochemistry, 2000, 287, 234-242.	2.4	14
150	A liquid crystal pixel array for signal discrimination in array biosensors. Biosensors and Bioelectronics, 2000, 15, 417-421.	10.1	16
151	Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor. Biosensors and Bioelectronics, 2000, 15, 579-589.	10.1	158
152	Trace detection of explosives using a membrane-based displacement immunoassay. Journal of Immunological Methods, 2000, 246, 69-77.	1.4	62
153	Detecting staphylococcal enterotoxin B using an automated fiber optic biosensor. Biosensors and Bioelectronics, 1999, 14, 163-170.	10.1	82
154	Multi-analyte explosive detection using a fiber optic biosensor. Analytica Chimica Acta, 1999, 399, 13-20.	5.4	78
155	Array biosensor: optical and fluidics systems. Biomedical Microdevices, 1999, 1, 139-153.	2.8	78
156	A Computational Reactionâ~'Diffusion Model for the Analysis of Transport-Limited Kinetics. Analytical Chemistry, 1999, 71, 5405-5412.	6.5	97
157	Array Biosensor for Simultaneous Identification of Bacterial, Viral, and Protein Analytes. Analytical Chemistry, 1999, 71, 3846-3852.	6.5	283
158	An Array Immunosensor for Simultaneous Detection of Clinical Analytes. Analytical Chemistry, 1999, 71, 433-439.	6.5	243
159	Multianalyte Detection Using a Capillary-Based Flow Immunosensor. Analytical Biochemistry, 1998, 255, 13-19.	2.4	79
160	A fiber optic biosensor for multianalyte detection: importance of preventing fluorophore aggregation. Sensors and Actuators B: Chemical, 1998, 51, 46-51.	7.8	16
161	Detection of multiple toxic agents using a planar array immunosensor. Biosensors and Bioelectronics, 1998, 13, 407-415.	10.1	122
162	A membrane-based displacement flow immunoassay. Biosensors and Bioelectronics, 1998, 13, 939-944.	10.1	30

#	Article	IF	CITATIONS
163	Remote Sensing Using an Airborne Biosensor. Environmental Science & Technology, 1998, 32, 2461-2466.	10.0	58
164	Dissociation Rate Kinetics in a Solid-Phase Flow Immunoassay. Analytical Letters, 1998, 31, 1663-1675.	1.8	16
165	Assessment Of Heterogeneity in Antibodyâ^'Antigen Displacement Reactions. Analytical Chemistry, 1997, 69, 175-182.	6.5	28
166	Capillary-Based Displacement Flow Immunosensor. Analytical Chemistry, 1997, 69, 1961-1964.	6.5	47
167	A Displacement Flow Immunosensor for Explosive Detection Using Microcapillaries. Analytical Chemistry, 1997, 69, 2779-2785.	6.5	65
168	On-Site Detection of TNT with a Portable Fiber Optic Biosensor. Environmental Science & Technology, 1997, 31, 837-841.	10.0	87
169	Effectiveness of protein A for antibody immobilization for a fiber optic biosensor. Biosensors and Bioelectronics, 1997, 12, 329-336.	10.1	122
170	Fiber optic-based biosensor for ricin. Biosensors and Bioelectronics, 1997, 12, 937-945.	10.1	115
171	Antibody immobilization using heterobifunctional crosslinkers. Biosensors and Bioelectronics, 1997, 12, 1101-1106.	10.1	129
172	Environmental Immunosensing at the Naval Research Laboratory. ACS Symposium Series, 1996, , 46-55.	0.5	2
173	Use of the USDT flow immunosensor for quantitation of benzoylecgonine in urine. Biosensors and Bioelectronics, 1996, 11, 725-734.	10.1	25
174	Quantitating Staphylococcal Enterotoxin B in Diverse Media Using a Portable Fiber-Optic Biosensor. Analytical Biochemistry, 1996, 233, 50-57.	2.4	102
175	Adaptation of a Fiber-Optic Biosensor for Use in Environmental Monitoring. ACS Symposium Series, 1996, , 33-43.	0.5	6
176	Calibration of Biosensor Response Using Simultaneous Evanescent Wave Excitation of Cyanine-Labeled Capture Antibodies and Antigens. Analytical Biochemistry, 1995, 232, 73-78.	2.4	29
177	Use of three longer-wavelength fluorophores with the fiber-optic biosensor. Sensors and Actuators B: Chemical, 1995, 29, 25-30.	7.8	19
178	Binding kinetics of immobilized antibodies in a flow immunosensor. Sensors and Actuators B: Chemical, 1995, 29, 72-78.	7.8	19
179	Detection of TNT in Water Using an Evanescent Wave Fiber-Optic Biosensor. Analytical Chemistry, 1995, 67, 2431-2435.	6.5	141
180	Inclusion of Ganglioside GM1Into Liposome Encapsulated Hemoglobin Does not Extend Circulation Persistence at Clinically Relevant Doses. Artificial Cells, Blood Substitutes, and Biotechnology, 1994, 22, 9-25.	0.9	12

#	Article	IF	CITATIONS
181	Regeneration of immobilized antibodies on fiber optic probes. Biosensors and Bioelectronics, 1994, 9, 585-592.	10.1	34
182	Effect of antibody density on the displacement kinetics of a flow immunoassay. Journal of Immunological Methods, 1994, 168, 227-234.	1.4	32
183	A fiber-optic evanescent-wave immunosensor for large molecules. Sensors and Actuators B: Chemical, 1993, 11, 239-243.	7.8	29
184	A fiber optic biosensor: combination tapered fibers designed for improved signal acquisition. Biosensors and Bioelectronics, 1993, 8, 249-256.	10.1	88
185	Fiber-Optic Biosensor for the Detection of Hazardous Materials. ImmunoMethods, 1993, 3, 122-127.	0.8	51
186	Continuous-flow immunosensor for detection of explosives. Analytical Chemistry, 1993, 65, 3561-3565.	6.5	119
187	The Effect of Tapering the Optical Fiber on Evanescent Wave Measurements. Analytical Letters, 1992, 25, 1183-1199.	1.8	41
188	Liposome Encapsulated Hemoglobin: Long-Term Storage Stability and in Vivo Characterization. Biomaterials, Artificial Cells, and Immobilization Biotechnology: Official Journal of the International Society for Artificial Cells and Immobilization Biotechnology, 1992, 20, 619-626.	0.2	8
189	Detection of Cocaine Using the Flow Immunosensor. Analytical Letters, 1992, 25, 1999-2019.	1.8	37
190	New approach to producing patterned biomolecular assemblies. Journal of the American Chemical Society, 1992, 114, 4432-4433.	13.7	116
191	Kinetics of antibody binding at solid-liquid interfaces in flow. Journal of Immunological Methods, 1992, 156, 223-230.	1.4	42
192	Detection of Clostridium botulinum toxin A using a fiber optic-based biosensor. Analytical Biochemistry, 1992, 205, 306-312.	2.4	160
193	Drug Detection Using the Flow Immunosensor. ACS Symposium Series, 1992, , 73-80.	0.5	3
194	Immobilization of acetylcholinesterase on solid surfaces: chemistry and activity studies. Sensors and Actuators B: Chemical, 1991, 3, 311-317.	7.8	23
195	Novel trifunctional carrier molecule for the fluorescent labeling of haptens. Analytical Biochemistry, 1991, 193, 272-279.	2.4	11
196	A continuous flow immunoassay for rapid and sensitive detection of small molecules. Journal of Immunological Methods, 1990, 135, 191-197.	1.4	73
197	Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. Analytical Biochemistry, 1989, 178, 408-413.	2.4	366
198	The Stability and Shelf-Life of Liposome Encapsulated Hemoglobin: A Potential Blood Substitute. Materials Research Society Symposia Proceedings, 1987, 110, 153.	0.1	2

#	Article	IF	CITATIONS
199	Cytogenetics and cell surface marker analysis in chronic myelocytic leukemia. II. Implications for patient management. Cancer Genetics and Cytogenetics, 1987, 26, 25-37.	1.0	4
200	A homogeneous immunoassay for the mycotoxin T-2 utilizing liposomes, monoclonal antibodies, and complement. Analytical Biochemistry, 1987, 163, 369-375.	2.4	37
201	Cytogenetics and cell surface marker analysis in CML — 1. Prediction of phenotype of acute phase transformation. Leukemia Research, 1985, 9, 1093-1098.	0.8	5
202	Immunoregulatory cell subsets in Goodpasture's syndrome: Evidence for selective T suppressor-cell depletion during active autoimmune disease. Journal of Clinical Immunology, 1983, 3, 368-374.	3.8	5
203	Extremely high levels of natural killer cells in angioimmunoblastic lymphadenopathy. Journal of Clinical Immunology, 1983, 3, 375-381.	3.8	5
204	Monocyte markers and the common acute lymphoblastic leukemia antigen on chronic lymphocytic leukemia cells. American Journal of Hematology, 1983, 15, 335-342.	4.1	12
205	The clonal excess method for detecting B-cell lymphoma. Clinical Immunology Newsletter, 1982, 3, 45-47.	0.1	1
206	Acute lymphocytic leukemic transformation of chronic lymphocytic leukemia: Substantiation by flow cytometry. American Journal of Hematology, 1981, 10, 391-398.	4.1	38
207	The Efects of Protein Extraction on the Structure and Filtration Properties of Renal Basement Membranes. FEBS Journal, 1980, 111, 485-490.	0.2	6
208	The Role of Receptor IgM and IgD in Determining Triggering and Induction of Tolerance in Murine B Cells1. Immunological Reviews, 1979, 43, 69-95.	6.0	48