
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9530735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Analysis of Sulfoniumâ~ï€, Ammoniumâ~ï€, and Sulfurâ~ï€ Interactions and Relevance to SAM-Dependent Methyltransferases. Journal of the American Chemical Society, 2022, 144, 2535-2545.	13.7	2
2	From Protein Design to the Energy Landscape of a Cold Unfolding Protein. Journal of Physical Chemistry B, 2022, 126, 1212-1231.	2.6	3
3	Design and engineering of light-sensitive protein switches. Current Opinion in Structural Biology, 2022, 74, 102377.	5.7	7
4	A conserved set of mutations for stabilizing soluble envelope protein dimers from dengue and Zika viruses to advance the development of subunit vaccines. Journal of Biological Chemistry, 2022, 298, 102079.	3.4	2
5	<scp>AlphaFold</scp> accurately predicts distinct conformations based on the oligomeric state of a de novo designed protein. Protein Science, 2022, 31, .	7.6	6
6	Perturbing the energy landscape for improved packing during computational protein design. Proteins: Structure, Function and Bioinformatics, 2021, 89, 436-449.	2.6	85
7	Modifications to the Framework Regions Eliminate Chimeric Antigen Receptor Tonic Signaling. Cancer Immunology Research, 2021, 9, 441-453.	3.4	25
8	PyRosetta Jupyter Notebooks Teach Biomolecular Structure Prediction and Design. The Biophysicist, 2021, 2, 108-122.	0.3	8
9	Designed, highly expressing, thermostable dengue virus 2 envelope protein dimers elicit quaternary epitope antibodies. Science Advances, 2021, 7, eabg4084.	10.3	22
10	Designer proteins that competitively inhibit Gαq by targeting its effector site. Journal of Biological Chemistry, 2021, 297, 101348.	3.4	7
11	Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks. Nature Communications, 2021, 12, 6947.	12.8	16
12	A Computational Protocol for Regulating Protein Binding Reactions with a Light-Sensitive Protein Dimer. Journal of Molecular Biology, 2020, 432, 805-814.	4.2	6
13	Computerâ€based engineering of thermostabilized antibody fragments. AICHE Journal, 2020, 66, e16864.	3.6	12
14	An optogenetic switch for the Set2 methyltransferase provides evidence for transcription-dependent and -independent dynamics of H3K36 methylation. Genome Research, 2020, 30, 1605-1617.	5.5	10
15	Better together: Elements of successful scientific software development in a distributed collaborative community. PLoS Computational Biology, 2020, 16, e1007507.	3.2	27
16	Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nature Methods, 2020, 17, 665-680.	19.0	513
17	Computational stabilization of T cell receptors allows pairing with antibodies to form bispecifics. Nature Communications, 2020, 11, 2330.	12.8	12
18	Dimerization of Dengue Virus E Subunits Impacts Antibody Function and Domain Focus. Journal of Virology, 2020, 94, .	3.4	9

#	Article	IF	CITATIONS
19	Advances in protein structure prediction and design. Nature Reviews Molecular Cell Biology, 2019, 20, 681-697.	37.0	489
20	Designing protein structures and complexes with the molecular modeling program Rosetta. Journal of Biological Chemistry, 2019, 294, 19436-19443.	3.4	27
21	Optogenetic control of cofilin and αTAT in living cells using Z-lock. Nature Chemical Biology, 2019, 15, 1183-1190.	8.0	36
22	Designing new protein structures and functions with the molecular modeling program Rosetta. FASEB Journal, 2019, 33, .	0.5	0
23	Comparative biochemical analysis of UHRF proteins reveals molecular mechanisms that uncouple UHRF2 from DNA methylation maintenance. Nucleic Acids Research, 2018, 46, 4405-4416.	14.5	25
24	Lightâ€Dependent Cytoplasmic Recruitment Enhances the Dynamic Range of a Nuclear Import Photoswitch. ChemBioChem, 2018, 19, 1319-1325.	2.6	15
25	Physiological temperatures reduce dimerization of dengue and Zika virus recombinant envelope proteins. Journal of Biological Chemistry, 2018, 293, 8922-8933.	3.4	22
26	Protocols for Requirement-Driven Protein Design in the Rosetta Modeling Program. Journal of Chemical Information and Modeling, 2018, 58, 895-901.	5.4	20
27	Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design. Journal of Chemical Theory and Computation, 2018, 14, 2751-2760.	5.3	36
28	Control of microtubule dynamics using an optogenetic microtubule plus end–F-actin cross-linker. Journal of Cell Biology, 2018, 217, 779-793.	5.2	24
29	We FRET so You Don't Have To: New Models of the Lipoprotein Lipase Dimer. Biochemistry, 2018, 57, 241-254.	2.5	11
30	Analysis of Relative Binding Affinity Predictions for Protein-Protein Complexes. Biophysical Journal, 2018, 114, 408a.	0.5	0
31	Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution. ACS Synthetic Biology, 2018, 7, 2898-2907.	3.8	17
32	Evolution of a highly active and enantiospecific metalloenzyme from short peptides. Science, 2018, 362, 1285-1288.	12.6	116
33	A Bifunctional Role for the UHRF1ÂUBL Domain in the Control of Hemi-methylated DNA-Dependent Histone Ubiquitylation. Molecular Cell, 2018, 72, 753-765.e6.	9.7	58
34	Engineering a Protein Binder Specific for p38α with Interface Expansion. Biochemistry, 2018, 57, 4526-4535.	2.5	10
35	The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. Journal of Chemical Theory and Computation, 2017, 13, 3031-3048.	5.3	1,032
36	A Deep-Dive into the Rosetta Energy Function for Biological Macromolecules. Biophysical Journal, 2017, 112, 194a.	0.5	0

#	Article	IF	CITATIONS
37	Computational design of a specific heavy chain/l̂º light chain interface for expressing fully IgG bispecific antibodies. Protein Science, 2017, 26, 2021-2038.	7.6	22
38	Cells lay their own tracks: optogenetic Cdc42 activation stimulates fibronectin deposition supporting directed migration. Journal of Cell Science, 2017, 130, 2971-2983.	2.0	25
39	Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides. Journal of the American Chemical Society, 2017, 139, 11734-11744.	13.7	119
40	Engineering a genetically encoded competitive inhibitor of the KEAP1–NRF2 interaction via structure-based design and phage display. Protein Engineering, Design and Selection, 2016, 29, gzv055.	2.1	21
41	Go in! Go out! Inducible control of nuclear localization. Current Opinion in Chemical Biology, 2016, 34, 62-71.	6.1	47
42	Probing the minimal determinants of zinc binding with computational protein design. Protein Engineering, Design and Selection, 2016, 29, 327-338.	2.1	17
43	Light-induced nuclear export reveals rapid dynamics of epigenetic modifications. Nature Chemical Biology, 2016, 12, 399-401.	8.0	89
44	Computational Design of Protein Linkers. Methods in Molecular Biology, 2016, 1414, 341-351.	0.9	3
45	Design of structurally distinct proteins using strategies inspired by evolution. Science, 2016, 352, 687-690.	12.6	132
46	Mechanism of Lysine 48 Selectivity during Polyubiquitin Chain Formation by the Ube2R1/2 Ubiquitin-Conjugating Enzyme. Molecular and Cellular Biology, 2016, 36, 1720-1732.	2.3	14
47	Lamellipodia are critical for haptotactic sensing and response. Journal of Cell Science, 2016, 129, 2329-42.	2.0	53
48	Computational Repacking of HIF-2α Cavity Replaces Water-Based Stabilized Core. Structure, 2016, 24, 1918-1927.	3.3	6
49	Tuning the Binding Affinities and Reversion Kinetics of a Light Inducible Dimer Allows Control of Transmembrane Protein Localization. Biochemistry, 2016, 55, 5264-5271.	2.5	68
50	LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nature Methods, 2016, 13, 755-758.	19.0	267
51	Engineering and Application of LOV2-Based Photoswitches. Methods in Enzymology, 2016, 580, 169-190.	1.0	27
52	Boosting protein stability with the computational design of βâ€sheet surfaces. Protein Science, 2016, 25, 702-710.	7.6	18
53	Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C. Cell, 2016, 165, 1440-1453.	28.9	126
54	UbSRD: The Ubiquitin Structural Relational Database. Journal of Molecular Biology, 2016, 428, 679-687.	4.2	18

#	Article	IF	CITATIONS
55	Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon. Molecular Cell, 2016, 61, 809-820.	9.7	132
56	Computationally Designed Bispecific Antibodies using Negative State Repertoires. Structure, 2016, 24, 641-651.	3.3	54
57	Correlating <i>in Vitro</i> and <i>in Vivo</i> Activities of Light-Inducible Dimers: AÂCellular Optogenetics Guide. ACS Synthetic Biology, 2016, 5, 53-64.	3.8	74
58	Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. ELife, 2016, 5, .	6.0	111
59	Ubiquitin-conjugating Enzyme Cdc34 and Ubiquitin Ligase Skp1-Cullin-F-box Ligase (SCF) Interact through Multiple Conformations. Journal of Biological Chemistry, 2015, 290, 1106-1118.	3.4	20
60	Data in support of UbSRD: The Ubiquitin Structural Relational Database. Data in Brief, 2015, 5, 605-615.	1.0	3
61	SwiftLib: rapid degenerate-codon-library optimization through dynamic programming. Nucleic Acids Research, 2015, 43, e34-e34.	14.5	53
62	Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. Journal of Chemical Theory and Computation, 2015, 11, 609-622.	5.3	204
63	Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 112-117.	7.1	533
64	Functional Class I and II Amino Acid-activating Enzymes Can Be Coded by Opposite Strands of the Same Gene. Journal of Biological Chemistry, 2015, 290, 19710-19725.	3.4	62
65	Fab-based bispecific antibody formats with robust biophysical properties and biological activity. MAbs, 2015, 7, 470-482.	5.2	53
66	Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature, 2015, 525, 333-338.	27.8	546
67	Computational de novo design of a fourâ€helix bundle protein— <scp>DND</scp> _4 <scp>HB</scp> . Protein Science, 2015, 24, 434-445.	7.6	24
68	Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation. PLoS ONE, 2015, 10, e0128443.	2.5	95
69	Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nature Biotechnology, 2014, 32, 191-198.	17.5	210
70	Requirements for 5′dRP/AP lyase activity in Ku. Nucleic Acids Research, 2014, 42, 11136-11143.	14.5	18
71	Strategies to control the binding mode of de novo designed protein interactions. Current Opinion in Structural Biology, 2013, 23, 639-646.	5.7	19
72	Scientific Benchmarks for Guiding Macromolecular Energy Function Improvement. Methods in Enzymology, 2013, 523, 109-143.	1.0	195

#	Article	IF	CITATIONS
73	Cages from coils. Nature Biotechnology, 2013, 31, 809-810.	17.5	9
74	Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. Nature Structural and Molecular Biology, 2013, 20, 46-52.	8.2	80
75	A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds. Protein Science, 2013, 22, 74-82.	7.6	166
76	Supertertiary Structure of the MAGUK Core from PSD-95. Structure, 2013, 21, 402-413.	3.3	61
77	Using anchoring motifs for the computational design of protein–protein interactions. Biochemical Society Transactions, 2013, 41, 1141-1145.	3.4	9
78	A structural bioinformatics approach for identifying proteins predisposed to bind linear epitopes on pre-selected target proteins. Protein Engineering, Design and Selection, 2013, 26, 283-289.	2.1	4
79	Combined computational design of a zincâ€binding site and a protein–protein interaction: One open zinc coordination site was not a robust hotspot for de novo ubiquitin binding. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1245-1255.	2.6	10
80	Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design. PLoS ONE, 2013, 8, e67051.	2.5	59
81	Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE). PLoS ONE, 2013, 8, e63906.	2.5	348
82	Alternative Computational Protocols for Supercharging Protein Surfaces for Reversible Unfolding and Retention of Stability. PLoS ONE, 2013, 8, e64363.	2.5	73
83	Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. ELife, 2013, 2, e00828.	6.0	130
84	Ras Activity Regulation by Monoubiquitination. FASEB Journal, 2013, 27, 1046.3.	0.5	0
85	Metal-Mediated Affinity and Orientation Specificity in a Computationally Designed Protein Homodimer. Journal of the American Chemical Society, 2012, 134, 375-385.	13.7	95
86	Redesigning the NEDD8 Pathway with a Bacterial Genetic Screen for Ubiquitin-Like Molecule Transfer. Journal of Molecular Biology, 2012, 418, 161-166.	4.2	2
87	A Systematic Computational Method to Predict and Enhance Antibody-Antigen Binding in the Absence of Antibody Crystal Structures. Biophysical Journal, 2012, 102, 621a.	0.5	Ο
88	Incorporation of Noncanonical Amino Acids into Rosetta and Use in Computational Protein-Peptide Interface Design. PLoS ONE, 2012, 7, e32637.	2.5	98
89	Computational protein design with explicit consideration of surface hydrophobic patches. Proteins: Structure, Function and Bioinformatics, 2012, 80, 825-838.	2.6	60
90	Catalysis by a De Novo Zinc-Mediated Protein Interface: Implications for Natural Enzyme Evolution and Rational Enzyme Engineering. Biochemistry, 2012, 51, 3933-3940.	2.5	114

#	Article	IF	CITATIONS
91	Structure-Based Design of Supercharged, Highly Thermoresistant Antibodies. Chemistry and Biology, 2012, 19, 449-455.	6.0	127
92	Designing Photoswitchable Peptides Using the AsLOV2 Domain. Chemistry and Biology, 2012, 19, 507-517.	6.0	176
93	Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core. Structure, 2012, 20, 1086-1096.	3.3	58
94	Computational Design of the Sequence and Structure of a Protein-Binding Peptide. Journal of the American Chemical Society, 2011, 133, 4190-4192.	13.7	44
95	A biosensor generated via high-throughput screening quantifies cell edge Src dynamics. Nature Chemical Biology, 2011, 7, 437-444.	8.0	72
96	Rosetta3. Methods in Enzymology, 2011, 487, 545-574.	1.0	1,620
97	Essential Role for Ubiquitin-Ubiquitin-Conjugating Enzyme Interaction in Ubiquitin Discharge from Cdc34 to Substrate. Molecular Cell, 2011, 42, 75-83.	9.7	108
98	Redesign of the PAK1 Autoinhibitory Domain for Enhanced Stability and Affinity in Biosensor Applications. Journal of Molecular Biology, 2011, 413, 513-522.	4.2	10
99	Community-Wide Assessment of Protein-Interface Modeling Suggests Improvements to Design Methodology. Journal of Molecular Biology, 2011, 414, 289-302.	4.2	131
100	Anchored Design of Protein-Protein Interfaces. PLoS ONE, 2011, 6, e20872.	2.5	67
101	From Computational Design to a Protein That Binds. Science, 2011, 332, 801-802.	12.6	9
102	Structural Determinants of Affinity Enhancement between GoLoco Motifs and G-Protein α Subunit Mutants. Journal of Biological Chemistry, 2011, 286, 3351-3358.	3.4	17
103	Computational design of a symmetric homodimer using β-strand assembly. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20562-20567.	7.1	71
104	A Generic Program for Multistate Protein Design. PLoS ONE, 2011, 6, e20937.	2.5	88
105	Computational design of secondâ€site suppressor mutations at protein–protein interfaces. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1055-1065.	2.6	31
106	Metal templated design of protein interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1827-1832.	7.1	125
107	Engineering a protein–protein interface using a computationally designed library. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19296-19301.	7.1	59
108	Tryptophanyl-tRNA Synthetase Urzyme. Journal of Biological Chemistry, 2010, 285, 38590-38601.	3.4	58

#	Article	IF	CITATIONS
109	Kinetics of the Transfer of Ubiquitin from UbcH7 to E6AP. Biochemistry, 2010, 49, 1361-1363.	2.5	17
110	Computational Design of a PAK1 Binding Protein. Journal of Molecular Biology, 2010, 400, 257-270.	4.2	69
111	G Protein Mono-ubiquitination by the Rsp5 Ubiquitin Ligase. Journal of Biological Chemistry, 2009, 284, 8940-8950.	3.4	25
112	Computational design of affinity and specificity at protein–protein interfaces. Current Opinion in Structural Biology, 2009, 19, 458-463.	5.7	117
113	A genetically encoded photoactivatable Rac controls the motility of living cells. Nature, 2009, 461, 104-108.	27.8	960
114	A Preliminary Survey of the Peptoid Folding Landscape. Journal of the American Chemical Society, 2009, 131, 16798-16807.	13.7	123
115	Rapid E2-E3 Assembly and Disassembly Enable Processive Ubiquitylation of Cullin-RING Ubiquitin Ligase Substrates. Cell, 2009, 139, 957-968.	28.9	178
116	Crystal structures and increased stabilization of the protein G variants with switched folding pathways NuG1 and NuG2. Protein Science, 2009, 11, 2924-2931.	7.6	45
117	Future Challenges Of Computational Protein Design. , 2009, , .		2
118	Using quantum mechanics to improve estimates of amino acid side chain rotamer energies. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1637-1646.	2.6	27
119	Computer-Based Redesign of a \hat{l}^2 Sandwich Protein Suggests that Extensive Negative Design Is Not Required for De Novo \hat{l}^2 Sheet Design. Structure, 2008, 16, 1799-1805.	3.3	49
120	High-resolution design of a protein loop. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17668-17673.	7.1	113
121	High-resolution Structural and Thermodynamic Analysis of Extreme Stabilization of Human Procarboxypeptidase by Computational Protein Design. Journal of Molecular Biology, 2007, 366, 1209-1221.	4.2	84
122	Sequence Determinants of E2-E6AP Binding Affinity and Specificity. Journal of Molecular Biology, 2007, 369, 419-428.	4.2	59
123	Structure-based Protocol for Identifying Mutations that Enhance Protein–Protein Binding Affinities. Journal of Molecular Biology, 2007, 371, 1392-1404.	4.2	90
124	A Minimal TrpRS Catalytic Domain Supports Sense/Antisense Ancestry of Class I and II Aminoacyl-tRNA Synthetases. Molecular Cell, 2007, 25, 851-862.	9.7	87
125	Maintaining solvent accessible surface area under rotamer substitution for protein design. Journal of Computational Chemistry, 2007, 28, 1336-1341.	3.3	15
126	A Conformational Transition State Accompanies Tryptophan Activation by B. stearothermophilus Tryptophanyl-tRNA Synthetase. Structure, 2007, 15, 1272-1284.	3.3	37

#	Article	IF	CITATIONS
127	COMPUTER-BASED DESIGN OF NOVEL PROTEIN STRUCTURES. Annual Review of Biophysics and Biomolecular Structure, 2006, 35, 49-65.	18.3	116
128	Computational Design of a Single Amino Acid Sequence that Can Switch between Two Distinct Protein Folds. Journal of the American Chemical Society, 2006, 128, 1154-1161.	13.7	171
129	Mis-translation of a Computationally Designed Protein Yields an Exceptionally Stable Homodimer: Implications for Protein Engineering and Evolution. Journal of Molecular Biology, 2006, 362, 1004-1024.	4.2	29
130	Design of protein conformational switches. Current Opinion in Structural Biology, 2006, 16, 525-530.	5.7	108
131	RosettaDesign server for protein design. Nucleic Acids Research, 2006, 34, W235-W238.	14.5	184
132	E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nature Structural and Molecular Biology, 2005, 12, 933-934.	8.2	135
133	A "solvated rotamer―approach to modeling water-mediated hydrogen bonds at protein-protein interfaces. Proteins: Structure, Function and Bioinformatics, 2005, 58, 893-904.	2.6	129
134	Protein design simulations suggest that side-chain conformational entropy is not a strong determinant of amino acid environmental preferences. Proteins: Structure, Function and Bioinformatics, 2005, 62, 739-748.	2.6	31
135	Rotamer-Pair Energy Calculations Using a Trie Data Structure. Lecture Notes in Computer Science, 2005, , 389-400.	1.3	12
136	An adaptive dynamic programming algorithm for the side chain placement problem. Pacific Symposium on Biocomputing, 2005, , 16-27.	0.7	16
137	Exploring folding free energy landscapes using computational protein design. Current Opinion in Structural Biology, 2004, 14, 89-95.	5.7	88
138	AN ADAPTIVE DYNAMIC PROGRAMMING ALGORITHM FOR THE SIDE CHAIN PLACEMENT PROBLEM. , 2004, , .		14
139	Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. Science, 2003, 302, 1364-1368.	12.6	1,471
140	Protein–Protein Docking with Simultaneous Optimization of Rigid-body Displacement and Side-chain Conformations. Journal of Molecular Biology, 2003, 331, 281-299.	4.2	1,017
141	A Large Scale Test of Computational Protein Design: Folding and Stability of Nine Completely Redesigned Globular Proteins. Journal of Molecular Biology, 2003, 332, 449-460.	4.2	293
142	Accurate computer-based design of a new backbone conformation in the second turn of protein L. Journal of Molecular Biology, 2002, 315, 471-477.	4.2	73
143	Computer-based redesign of a protein folding pathway. Nature Structural Biology, 2001, 8, 602-605.	9.7	206
144	Effects of varying the local propensity to form secondary structure on the stability and folding kinetics of a rapid folding mixed α/β protein: characterization of a truncation mutant of the N-terminal domain of the ribosomal protein L9 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 289, 167-174.	4.2	26

#	Article	IF	CITATIONS
145	Amide proton exchange measurements as a probe of the stability and dynamics of the nâ€ŧerminal domain of the ribosomal protein L9: Comparison with the intact protein. Protein Science, 1998, 7, 1994-1997.	7.6	7
146	Global analysis of the thermal and chemical denaturation of the Nâ€ŧerminal domain of the ribosomal protein L9 in H ₂ O and D ₂ O. Determination of the thermodynamic parameters, Δ <i>H</i> °, Δ <i>S</i> °, and Δ <i>C</i> ° _p , and evaluation of solvent isotope effects. Protein Science, 1998, 7, 2405-2412.	7.6	77
147	Structure and Stability of the N-Terminal Domain of the Ribosomal Protein L9:  Evidence for Rapid Two-State Folding. Biochemistry, 1998, 37, 1025-1032.	2.5	73
148	Cooperative folding of a protein mini domain: the peripheral subunit-binding domain of the pyruvate dehydrogenase multienzyme complex 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 276, 479-489.	4.2	39
149	Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 284, 1661-1670.	4.2	110
150	An exceptionally stable helix from the ribosomal protein L9: implications for protein folding and stability. Journal of Molecular Biology, 1997, 270, 640-647.	4.2	47