Alba Guarné

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9530247/publications.pdf

Version: 2024-02-01

218677 243625 2,239 55 26 44 citations h-index g-index papers 56 56 56 3034 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acyldepsipeptide Antibiotics Induce the Formation of a Structured Axial Channel in ClpP: A Model for the ClpX/ClpA-Bound State of ClpP. Chemistry and Biology, 2010, 17, 959-969.	6.0	168
2	Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair. EMBO Journal, 2004, 23, 4134-4145.	7.8	163
3	Mlh1-Mlh3, a Meiotic Crossover and DNA Mismatch Repair Factor, Is a Msh2-Msh3-stimulated Endonuclease. Journal of Biological Chemistry, 2014, 289, 5664-5673.	3.4	124
4	Dimeric Structure of Pseudokinase RNase L Bound to 2-5A Reveals a Basis for Interferon-Induced Antiviral Activity. Molecular Cell, 2014, 53, 221-234.	9.7	123
5	Structure of the Endonuclease Domain of MutL: Unlicensed to Cut. Molecular Cell, 2010, 39, 145-151.	9.7	122
6	Molecular basis of human CD22 function and therapeutic targeting. Nature Communications, 2017, 8, 764.	12.8	114
7	The structures of picornaviral proteinases. Virus Research, 1999, 62, 159-168.	2.2	105
8	Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility. Science, 2019, 366, .	12.6	99
9	Structural and biochemical features distinguish the foot-and-mouth disease virus leader proteinase from other papain-like enzymes 1 1Edited by R. Huber. Journal of Molecular Biology, 2000, 302, 1227-1240.	4.2	62
10	The endonuclease domain of MutL interacts with the \hat{l}^2 sliding clamp. DNA Repair, 2011, 10, 87-93.	2.8	61
11	A dissipative pathway for the structural evolution of DNA fibres. Nature Chemistry, 2021, 13, 843-849.	13.6	60
12	The PMS2 Subunit of Human MutLα Contains a Metal Ion Binding Domain of the Iron-Dependent Repressor Protein Family. Journal of Molecular Biology, 2008, 382, 610-627.	4.2	55
13	FHA domains: Phosphopeptide binding and beyond. Progress in Biophysics and Molecular Biology, 2017, 127, 105-110.	2.9	49
14	Crystal structure of a SeqA–N filament: implications for DNA replication and chromosome organization. EMBO Journal, 2005, 24, 1502-1511.	7.8	48
15	The sliding clamp tethers the endonuclease domain of MutL to DNA. Nucleic Acids Research, 2015, 43, 10746-10759.	14.5	45
16	Mismatch repair in Gram-positive bacteria. Research in Microbiology, 2016, 167, 4-12.	2.1	45
17	Higher-Order Assembly of BRCC36–KIAA0157 Is Required for DUB Activity and Biological Function. Molecular Cell, 2015, 59, 970-983.	9.7	44
18	A novel nucleoid-associated protein specific to the actinobacteria. Nucleic Acids Research, 2013, 41, 4171-4184.	14.5	41

#	Article	IF	CITATIONS
19	The Functions of MutL in Mismatch Repair. Progress in Molecular Biology and Translational Science, 2012, 110, 41-70.	1.7	40
20	Structural consequences of the interaction of RbgA with a 50S ribosomal subunit assembly intermediate. Nucleic Acids Research, 2019, 47, 10414-10425.	14.5	38
21	Supramolecular arrangement of the full-length Zika virus NS5. PLoS Pathogens, 2019, 15, e1007656.	4.7	38
22	Rifampin phosphotransferase is an unusual antibiotic resistance kinase. Nature Communications, 2016, 7, 11343.	12.8	36
23	Insights from a decade of biophysical studies on MutL: Roles in strand discrimination and mismatch removal. Progress in Biophysics and Molecular Biology, 2015, 117, 149-156.	2.9	35
24	Role of Era in assembly and homeostasis of the ribosomal small subunit. Nucleic Acids Research, 2019, 47, 8301-8317.	14.5	34
25	The cryo-EM structure of YjeQ bound to the 30S subunit suggests a fidelity checkpoint function for this protein in ribosome assembly. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3396-E3403.	7.1	33
26	Characterization of platelet factor 4 amino acids that bind pathogenic antibodies in heparinâ€induced thrombocytopenia. Journal of Thrombosis and Haemostasis, 2019, 17, 389-399.	3.8	33
27	Insights into negative modulation of E. coli replication initiation from the structure of SeqA–hemimethylated DNA complex. Nature Structural Biology, 2002, 9, 839-43.	9.7	29
28	Structural basis for DNA targeting by the Tn7 transposon. Nature Structural and Molecular Biology, 2022, 29, 143-151.	8.2	29
29	Trapping and visualizing intermediate steps in the mismatch repair pathway <i>in vivo</i> . Molecular Microbiology, 2013, 90, 680-698.	2.5	28
30	Exo1 recruits Cdc5 polo kinase to $MutL\hat{I}^3$ to ensure efficient meiotic crossover formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30577-30588.	7.1	28
31	Structural and functional characterization of KEOPS dimerization by Pcc1 and its role in t ⁶ A biosynthesis. Nucleic Acids Research, 2016, 44, 6971-6980.	14.5	26
32	A naturally occurring transcript variant of MARCO reveals the SRCR domain is critical for function. Immunology and Cell Biology, 2016, 94, 646-655.	2.3	24
33	Dbf4: The whole is greater than the sum of its parts. Cell Cycle, 2013, 12, 1180-1188.	2.6	23
34	Saccharomyces cerevisiae Dbf4 Has Unique Fold Necessary for Interaction with Rad53 Kinase. Journal of Biological Chemistry, 2012, 287, 2378-2387.	3.4	22
35	A Novel Non-canonical Forkhead-associated (FHA) Domain-binding Interface Mediates the Interaction between Rad53 and Dbf4 Proteins. Journal of Biological Chemistry, 2014, 289, 2589-2599.	3.4	21
36	Conformation of the hypervariable region L3 without the key proline residue. Protein Science, 1996, 5, 167-169.	7.6	20

#	Article	IF	Citations
37	The Role of MukE in Assembling a Functional MukBEF Complex. Journal of Molecular Biology, 2011, 412, 578-590.	4.2	20
38	Conformational toggling controls target site choice for the heteromeric transposase element Tn7. Nucleic Acids Research, 2015, 43, 10734-10745.	14.5	18
39	Structural insights into the cooperative binding of SeqA to a tandem GATC repeat. Nucleic Acids Research, 2009, 37, 3143-3152.	14.5	17
40	AND' logic gates at work: Crystal structure of Rad53 bound to Dbf4 and Cdc7. Scientific Reports, 2016, 6, 34237.	3.3	17
41	Identification of an XRCC1 DNA binding activity essential for retention at sites of DNA damage. Scientific Reports, 2019, 9, 3095.	3.3	13
42	Evaluation of pre- and post-fusion Human metapneumovirus F proteins as subunit vaccine candidates in mice. Vaccine, 2020, 38, 2122-2127.	3.8	12
43	Crystal Structure of the Minimalist Max-E47 Protein Chimera. PLoS ONE, 2012, 7, e32136.	2.5	12
44	Binding of the regulatory domain of MutL to the sliding \hat{l}^2 -clamp is species specific. Nucleic Acids Research, 2019, 47, 4831-4842.	14.5	11
45	Distinct surfaces on Cdc5/PLK Polo-box domain orchestrate combinatorial substrate recognition during cell division. Scientific Reports, 2020, 10, 3379.	3.3	9
46	MukE and MukF Form Two Distinct High Affinity Complexes. Journal of Biological Chemistry, 2007, 282, 14373-14378.	3.4	8
47	Direct binding and internalization of diverse extracellular nucleic acid species through the collagenous domain of class A scavenger receptors. Immunology and Cell Biology, 2018, 96, 922-934.	2.3	6
48	The endonuclease domain of Bacillus subtilis MutL is functionally asymmetric. DNA Repair, 2019, 73, 1-6.	2.8	6
49	Crystallization and preliminary X-ray analysis of the hydroperoxidase I C-terminal domain fromEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 853-855.	2.5	5
50	Characterization of the defects in the ATP lid of E. coli MutL that cause transient hypermutability. DNA Repair, 2013, 12, 864-869.	2.8	5
51	Complementary uses of small angle X-ray scattering and X-ray crystallography. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1623-1630.	2.3	4
52	Large-scale production of recombinant Saw1 in Escherichia coli. Protein Expression and Purification, 2017, 133, 75-80.	1,3	3
53	Streptomyces IHF uses multiple interfaces to bind DNA. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129405.	2.4	2
54	The More the Merrier: When Four Interfaces Are Better Than One. Structure, 2019, 27, 1483-1484.	3.3	0

Alba Guarné

#	Article	IF	CITATIONS
55	Functional Characterization Of Dbf4 Interactions With DNA Replication And Checkpoint Factors. FASEB Journal, 2013, 27, 542.10.	0.5	O