
Riccardo Di Fiore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9529682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer Stem Cells and Their Possible Implications in Cervical Cancer: A Short Review. International Journal of Molecular Sciences, 2022, 23, 5167.	4.1	19
2	Extraterrestrial Gynecology: Could Spaceflight Increase the Risk of Developing Cancer in Female Astronauts? An Updated Review. International Journal of Molecular Sciences, 2022, 23, 7465.	4.1	7
3	GYNOCARE Update: Modern Strategies to Improve Diagnosis and Treatment of Rare Gynecologic Tumors—Current Challenges and Future Directions. Cancers, 2021, 13, 493.	3.7	14
4	Could MicroRNAs Be Useful Tools to Improve the Diagnosis and Treatment of Rare Gynecological Cancers? A Brief Overview. International Journal of Molecular Sciences, 2021, 22, 3822.	4.1	12
5	Adenosquamous Carcinoma of the Uterine Cervix – Impact of Histology on Clinical Management. Cancer Management and Research, 2021, Volume 13, 4979-4986.	1.9	3
6	An Overview of the Role of Long Non-Coding RNAs in Human Choriocarcinoma. International Journal of Molecular Sciences, 2021, 22, 6506.	4.1	8
7	LncRNA MORT (ZNF667-AS1) in Cancer—Is There a Possible Role in Gynecological Malignancies?. International Journal of Molecular Sciences, 2021, 22, 7829.	4.1	7
8	(In)Distinctive Role of Long Non-Coding RNAs in Common and Rare Ovarian Cancers. Cancers, 2021, 13, 5040.	3.7	4
9	The Role of Omics Approaches to Characterize Molecular Mechanisms of Rare Ovarian Cancers: Recent Advances and Future Perspectives. Biomedicines, 2021, 9, 1481.	3.2	8
10	Epithelioid Trophoblastic Tumour: A Case with Genetic Linkage to a Child Born over Seventeen Years Prior, Successfully Treated with Surgery and Pembrolizumab. Current Oncology, 2021, 28, 5346-5355.	2.2	6
11	A loop involving NRF2, miRâ€29bâ€1â€5p and AKT, regulates cell fate of MDAâ€MBâ€231 tripleâ€negative breast cancer cells. Journal of Cellular Physiology, 2020, 235, 629-637.	4.1	34
12	Anticancer effects of an extract from a local planarian species on human acute myeloid leukemia HL-60 cells in vitro. Biomedicine and Pharmacotherapy, 2020, 130, 110549.	5.6	4
13	Axolotl <i>Ambystoma mexicanum</i> extract induces cell cycle arrest and differentiation in human acute myeloid leukemia HL-60 cells. Tumor Biology, 2020, 42, 101042832095473.	1.8	6
14	Loss of MCL1 function sensitizes the MDAâ€MBâ€231 breast cancer cells to rhâ€TRAIL by increasing DR4 levels. Journal of Cellular Physiology, 2019, 234, 18432-18447.	4.1	7
15	Mclâ€1 targeting could be an intriguing perspective to cure cancer. Journal of Cellular Physiology, 2018, 233, 8482-8498.	4.1	41
16	Parthenolide prevents resistance of MDA-MB231 cells to doxorubicin and mitoxantrone: the role of Nrf2. Cell Death Discovery, 2017, 3, 17078.	4.7	57
17	Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation. Oncotarget, 2017, 8, 28939-28958.	1.8	57
18	Let-7d miRNA Shows Both Antioncogenic and Oncogenic Functions in Osteosarcoma-Derived 3AB-OS Cancer Stem Cells. Journal of Cellular Physiology, 2016, 231, 1832-1841.	4.1	41

RICCARDO DI FIORE

#	Article	IF	CITATIONS
19	Unusual roles of caspase-8 in triple-negative breast cancer cell line MDA-MB-231. International Journal of Oncology, 2016, 48, 2339-2348.	3.3	24
20	Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis. Cell Death and Disease, 2016, 7, e2194-e2194.	6.3	74
21	The Synergistic Effect of SAHA and Parthenolide in MDAâ€MB231 Breast Cancer Cells. Journal of Cellular Physiology, 2015, 230, 1276-1289.	4.1	51
22	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	2.8	239
23	Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Carcinogenesis, 2015, 36, S2-S18.	2.8	55
24	Retinoblastoma: History of His Identification, Characterization and Treatment Journal of Pediatric Oncology, 2015, 2, 94-102.	0.1	0
25	Involvement of PAR-4 in Cannabinoid-Dependent Sensitization of Osteosarcoma Cells to TRAIL-Induced Apoptosis. International Journal of Biological Sciences, 2014, 10, 466-478.	6.4	36
26	Mutant p53 gain of function can be at the root of dedifferentiation of human osteosarcoma MG63 cells into 3AB-OS cancer stem cells. Bone, 2014, 60, 198-212.	2.9	35
27	MicroRNA-29b-1 impairs in vitro cell proliferation, self-renewal and chemoresistance of human osteosarcoma 3AB-OS cancer stem cells. International Journal of Oncology, 2014, 45, 2013-2023.	3.3	57
28	The oxygen radicals involved in the toxicity induced by parthenolide in MDA-MB-231 cells. Oncology Reports, 2014, 32, 167-172.	2.6	34
29	Genetic and molecular characterization of the human Osteosarcoma 3ABâ€OS cancer stem cell line: A possible model for studying osteosarcoma origin and stemness. Journal of Cellular Physiology, 2013, 228, 1189-1201.	4.1	46
30	RB1 in cancer: Different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. Journal of Cellular Physiology, 2013, 228, 1676-1687.	4.1	147
31	Parthenolide induces caspaseâ€independent and AIFâ€mediated cell death in human osteosarcoma and melanoma cells. Journal of Cellular Physiology, 2013, 228, 952-967.	4.1	37
32	In human retinoblastoma Y79 cells okadaic acid–parthenolide co-treatment induces synergistic apoptotic effects, with PTEN as a key player. Cancer Biology and Therapy, 2013, 14, 922-931.	3.4	17
33	Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death and Disease, 2013, 4, e891-e891.	6.3	100
34	Parthenolide induces superoxide anion production by stimulating EGF receptor in MDA-MB-231 breast cancer cells. International Journal of Oncology, 2013, 43, 1895-1900.	3.3	16
35	Differentiation of human osteosarcoma 3AB-OS stem-like cells in derivatives of the three primary germ layers as a useful <i>in vitro</i> model to develop several purposes. Stem Cell Discovery, 2013, 03, 188-201.	0.5	5
36	Modeling human osteosarcoma in mice through 3ABâ€OS cancer stem cell xenografts. Journal of Cellular Biochemistry, 2012, 113, 3380-3392.	2.6	36

RICCARDO DI FIORE

#	Article	IF	CITATIONS
37	Paclitaxel and betaâ€lapachone synergistically induce apoptosis in human retinoblastoma Y79 cells by downregulating the levels of phosphoâ€Akt. Journal of Cellular Physiology, 2010, 222, 433-443.	4.1	38
38	ldentification and expansion of human osteosarcomaâ€cancerâ€stem cells by longâ€ŧerm 3â€aminobenzamide treatment. Journal of Cellular Physiology, 2009, 219, 301-313.	4.1	83
39	Low doses of paclitaxel potently induce apoptosis in human retinoblastoma Y79 cells by up-regulating E2F1. International Journal of Oncology, 2008, 33, 677-87.	3.3	15
40	Low doses of paclitaxel potently induce apoptosis in human retinoblastoma Y79 cells by up-regulating E2F1. International Journal of Oncology, 1992, 33, 677.	3.3	6
41	A short story of 3AB-OS Cancer Stem Cells, a possible model for studying cancer stemness. Cancer Cell & Microenvironment, 0, , .	0.8	0