Ik-Soo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9528752/publications.pdf

Version: 2024-02-01

		331670	233421
55	2,160	21	45
papers	citations	h-index	g-index
56	56	56	2794
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nature Medicine, 1995, 1, 1046-1051.	30.7	748
2	Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochemistry International, 2011, 58, 153-160.	3.8	181
3	Metabolism of antimalarial sesquiterpene lactones. , 1990, 48, 345-355.		126
4	Antioxidant flavone glycosides from the leaves of Sasa borealis. Archives of Pharmacal Research, 2007, 30, 161-166.	6.3	111
5	Plant-derived triterpenoid sweetness inhibitors. Journal of Ethnopharmacology, 1995, 47, 9-26.	4.1	71
6	Microbial Metabolism Studies of the Antimalarial Sesquiterpene Artemisinin. Journal of Natural Products, 1989, 52, 337-341.	3.0	69
7	Isoorientin induces Nrf2 pathway-driven antioxidant response through phosphatidylinositol 3-kinase signaling. Archives of Pharmacal Research, 2007, 30, 1590-1598.	6.3	52
8	Artesunate activates Nrf2 pathway-driven anti-inflammatory potential through ERK signaling in microglial BV2 cells. Neuroscience Letters, 2012, 509, 17-21.	2.1	52
9	Identification of thein vivo metabolites of the antimalarial arteether by thermospray high-performance liquid chromatography/mass spectrometry. Biological Mass Spectrometry, 1991, 20, 609-628.	0.5	46
10	Natural-product inhibitors of human DNA ligase I. Biochemical Journal, 1996, 314, 993-1000.	3.7	46
11	Lyso-PAF Analogues and Lysophosphatidylcholines from the Marine Sponge Spirastrella abata as Inhibitors of Cholesterol Biosynthesis. Journal of Natural Products, 1999, 62, 1554-1557.	3.0	42
12	Biopiracy of natural products and good bioprospecting practice. Phytomedicine, 2016, 23, 166-173.	5.3	41
13	Composition and Antioxidant Activities of Volatile Organic Compounds in Radiation-Bred Coreopsis Cultivars. Plants, 2020, 9, 717.	3.5	39
14	Structure elucidation and thermospray high-performance liquid chromatography/mass spectroscopy (HPLC/MS) of the microbial and mammalian metabolites of the antimalarial arteether. Pharmaceutical Research, 1990, 07, 923-927.	3.5	37
15	Thermospray mass spectroscopy/high performance liquid chromatographic identification of the metabolites formed from arteether using a rat liver microsome preparation. Biomedical & Environmental Mass Spectrometry, 1989, 18, 337-351.	1.6	35
16	Two lanostane triterpenoids from Abies koreana. Phytochemistry, 2004, 65, 2545-2549.	2.9	33
17	Microbial Metabolism of the Prenylated Chalcone Xanthohumol. Journal of Natural Products, 2006, 69, 1522-1524.	3.0	33
18	A cytotoxic secocycloartenoid fromAbies koreana. Archives of Pharmacal Research, 2001, 24, 527-531.	6.3	30

#	Article	lF	CITATIONS
19	Microbial metabolism of the environmental estrogen bisphenol A. Archives of Pharmacal Research, 2003, 26, 805-808.	6.3	30
20	A polyacetylene and flavonoids fromcirsium rhinoceros. Archives of Pharmacal Research, 2003, 26, 128-131.	6.3	29
21	Microbial metabolism studies of the antimalarial drug arteether. Pharmaceutical Research, 1990, 07, 199-203.	3.5	27
22	Dihydrobenzofuran Norlignans from the Leaves of <i>Cedrela sinensis</i> A. <scp>Juss</scp> . Helvetica Chimica Acta, 2010, 93, 272-276.	1.6	25
23	Microbial metabolites of 8-prenylnaringenin, an estrogenic prenylflavanone. Archives of Pharmacal Research, 2008, 31, 1241-1246.	6.3	20
24	Two New Diterpenes from the Twigs of <i>Cinnamomum cassia</i> . Helvetica Chimica Acta, 2009, 92, 2058-2062.	1.6	20
25	Microbial transformation of silybin by Trichoderma koningii. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 790-793.	2.2	19
26	Cytotoxic caffeic acid derivatives from the rhizomes of Cimicifuga heracleifolia. Archives of Pharmacal Research, 2012, 35, 1559-1565.	6.3	19
27	Constituents of Coreopsis lanceolata Flower and Their Dipeptidyl Peptidase IV Inhibitory Effects. Molecules, 2020, 25, 4370.	3.8	19
28	Quantification of Antioxidant Phenolic Compounds in a New Chrysanthemum Cultivar by High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization Mass Spectrometry. International Journal of Analytical Chemistry, 2017, 2017, 1-8.	1.0	17
29	A new flavonol glycoside from the aerial parts of <i>Epimedium koreanum</i> Nakai. Natural Product Research, 2017, 31, 320-325.	1.8	13
30	Biotransformed Metabolites of the Hop Prenylflavanone Isoxanthohumol. Molecules, 2019, 24, 394.	3.8	12
31	Prevention of Fine Dust-Induced Vascular Senescence by Humulus lupulus Extract and Its Major Bioactive Compounds. Antioxidants, 2020, 9, 1243.	5.1	12
32	Microbial transformation of bavachin by Absidia coerulea. Phytochemistry Letters, 2016, 18, 136-139.	1.2	11
33	Extract of Caragana sinica as a potential therapeutic option for increasing alpha-secretase gene expression. Phytomedicine, 2015, 22, 1027-1036.	5.3	10
34	Microbial metabolism of prenylated apigenin derivatives by Mucor hiemalis. Phytochemistry Letters, 2016, 16, 197-202.	1.2	8
35	Regulatory effects of 4-methoxychalcone on adipocyte differentiation through PPAR \hat{I}^3 activation and reverse effect on TNF- $\hat{I}\pm$ in 3T3-L1 cells. Food and Chemical Toxicology, 2017, 106, 17-24.	3.6	8
36	Identification of Two New Phenanthrenes from Dendrobii Herba and Their Cytotoxicity towards Human Hypopharynx Squamous Carcinoma Cell (FaDu). Molecules, 2019, 24, 2339.	3.8	8

#	Article	IF	CITATIONS
37	Biotransformation of the Phenolic Constituents from Licorice and Cytotoxicity Evaluation of Their Metabolites. International Journal of Molecular Sciences, 2021, 22, 10109.	4.1	8
38	Microbial transformation of the antimalarial sesquiterpene endoperoxide dihydroartemisinin. Natural Product Research, 2017, 31, 883-889.	1.8	7
39	Microbial transformation of quercetin and its prenylated derivatives. Natural Product Research, 2018, 32, 902-908.	1.8	7
40	Microbial Transformation of Licochalcones. Molecules, 2020, 25, 60.	3.8	7
41	Microbial Conjugation Studies of Licochalcones and Xanthohumol. International Journal of Molecular Sciences, 2021, 22, 6893.	4.1	6
42	Microbial Transformation of Prenylquercetins by Mucor hiemalis. Molecules, 2020, 25, 528.	3.8	6
43	A new ergostane-type cholesterol biosynthesis inhibitor isolated from Hormoconis resinae. Tetrahedron Letters, 2003, 44, 7159-7162.	1.4	4
44	A cholesterol biosynthesis inhibitor fromRhizopus oryzae. Archives of Pharmacal Research, 2004, 27, 624-627.	6.3	3
45	Microbial transformation of naringenin derivatives. Archives of Pharmacal Research, 2017, 40, 720-726.	6.3	3
46	Microbial Transformation of Galangin Derivatives and Cytotoxicity Evaluation of Their Metabolites. Catalysts, 2021, 11, 1020.	3.5	2
47	Microbial transformation of icariin and its derivatives. Natural Product Research, 2022, 36, 4103-4113.	1.8	2
48	Biotransformation of (â^')-α-Bisabolol by Absidia coerulea. Molecules, 2022, 27, 881.	3.8	2
49	Effects of Microbial Transformation on the Biological Activities of Prenylated Chalcones from Angelica keiskei. Foods, 2022, 11, 543.	4.3	2
50	Microbial Transformation of Broussochalcones A and B by Aspergillus niger. Journal of Natural Products, 2021, 84, 601-607.	3.0	1
51	Microbial Transformation of Yakuchinone A and Cytotoxicity Evaluation of Its Metabolites. International Journal of Molecular Sciences, 2022, 23, 3992.	4.1	1
52	Microbial Transformation of Two Prenylated Naringenins. Natural Product Sciences, 2017, 23, 306.	0.9	0
53	Microbial Transformation of Flavonoids in Cultures of <i>Mucor hiemalis</i> . Natural Product Communications, 2020, 15, 1934578X2097774.	0.5	0
54	Microbial Glycosylation of Phenanthrene and Bibenzyls by <i>Mucor hiemalis</i> . Natural Product Communications, 2020, 15, 1934578X2097450.	0.5	0

#	Article	IF	CITATIONS
55	Microbial Transformation and Biological Activities of the Prenylated Aromatic Compounds from Broussonetia kazinoki. Molecules, 2022, 27, 1879.	3.8	0