List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9528101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583, 459-468.	13.7	3,542
2	Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 2006, 440, 637-643.	13.7	2,681
3	Global Mapping of the Yeast Genetic Interaction Network. Science, 2004, 303, 808-813.	6.0	1,908
4	Meta- and Orthogonal Integration of Influenza "OMICs―Data Defines a Role for UBR4 in Virus Budding. Cell Host and Microbe, 2015, 18, 723-735.	5.1	868
5	The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell, 2020, 182, 685-712.e19.	13.5	825
6	Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature, 2007, 446, 806-810.	13.7	806
7	Exploration of the Function and Organization of the Yeast Early Secretory Pathway through an Epistatic Miniarray Profile. Cell, 2005, 123, 507-519.	13.5	804
8	Navigating the Chaperone Network: An Integrative Map of Physical and Genetic Interactions Mediated by the Hsp90 Chaperone. Cell, 2005, 120, 715-727.	13.5	729
9	Cotranscriptional Set2 Methylation of Histone H3 Lysine 36 Recruits a Repressive Rpd3 Complex. Cell, 2005, 123, 593-605.	13.5	712
10	Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces cerevisiae. Molecular and Cellular Proteomics, 2007, 6, 439-450.	2.5	692
11	Differential network biology. Molecular Systems Biology, 2012, 8, 565.	3.2	689
12	Global landscape of HIV–human protein complexes. Nature, 2012, 481, 365-370.	13.7	651
13	The Paf1 Complex Is Required for Histone H3 Methylation by COMPASS and Dot1p: Linking Transcriptional Elongation to Histone Methylation. Molecular Cell, 2003, 11, 721-729.	4.5	642
14	Phenotypic Landscape of a Bacterial Cell. Cell, 2011, 144, 143-156.	13.5	623
15	Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is Linked to Transcriptional Elongation by RNA Polymerase II. Molecular and Cellular Biology, 2003, 23, 4207-4218.	1.1	600
16	How many human proteoforms are there?. Nature Chemical Biology, 2018, 14, 206-214.	3.9	580
17	A Snf2 Family ATPase Complex Required for Recruitment of the Histone H2A Variant Htz1. Molecular Cell, 2003, 12, 1565-1576.	4.5	524
18	Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 2020, 370, .	6.0	508

#	Article	IF	CITATIONS
19	A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nature Methods, 2008, 5, 711-718.	9.0	473
20	RNA Polymerase II Elongation Factors of Saccharomyces cerevisiae : a Targeted Proteomics Approach. Molecular and Cellular Biology, 2002, 22, 6979-6992.	1.1	462
21	A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery. Nature, 2006, 439, 497-501.	13.7	439
22	SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28344-28354.	3.3	421
23	CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. Cell Stem Cell, 2016, 18, 541-553.	5.2	418
24	Inhibition of CRISPR-Cas9 with Bacteriophage Proteins. Cell, 2017, 168, 150-158.e10.	13.5	409
25	Rewiring of Genetic Networks in Response to DNA Damage. Science, 2010, 330, 1385-1389.	6.0	408
26	SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nature Cell Biology, 2011, 13, 715-721.	4.6	408
27	Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nature Medicine, 2015, 21, 1154-1162.	15.2	398
28	Host Cell Factors in HIV Replication: Meta-Analysis of Genome-Wide Studies. PLoS Pathogens, 2009, 5, e1000437.	2.1	396
29	Systematic Functional Prioritization of Protein Posttranslational Modifications. Cell, 2012, 150, 413-425.	13.5	375
30	HIV-1 Tat and Host AFF4 Recruit Two Transcription Elongation Factors into a Bifunctional Complex for Coordinated Activation of HIV-1 Transcription. Molecular Cell, 2010, 38, 428-438.	4.5	351
31	High-Definition Macromolecular Composition of Yeast RNA-Processing Complexes. Molecular Cell, 2004, 13, 225-239.	4.5	345
32	An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science, 2020, 370, 1473-1479.	6.0	336
33	Conservation and Rewiring of Functional Modules Revealed by an Epistasis Map in Fission Yeast. Science, 2008, 322, 405-410.	6.0	328
34	An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells. Cell, 2017, 169, 350-360.e12.	13.5	322
35	Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell, 2021, 184, 106-119.e14.	13.5	320
36	Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature, 2012, 481, 371-375.	13.7	312

#	Article	IF	CITATIONS
37	Evolution and functional crossâ€ŧalk of protein postâ€ŧranslational modifications. Molecular Systems Biology, 2013, 9, 714.	3.2	294
38	A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nature Genetics, 2017, 49, 193-203.	9.4	290
39	A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biology, 2006, 7, R63.	13.9	287
40	Combinatorial CRISPR–Cas9 screens for de novo mapping of genetic interactions. Nature Methods, 2017, 14, 573-576.	9.0	287
41	The functional landscape of the human phosphoproteome. Nature Biotechnology, 2020, 38, 365-373.	9.4	273
42	The functional landscape of mouse gene expression. Journal of Biology, 2004, 3, 21.	2.7	259
43	Comparative Flavivirus-Host Protein Interaction Mapping Reveals Mechanisms of Dengue and Zika Virus Pathogenesis. Cell, 2018, 175, 1931-1945.e18.	13.5	252
44	Evaluation of SARS-CoV-2 serology assays reveals a range of test performance. Nature Biotechnology, 2020, 38, 1174-1183.	9.4	251
45	Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science, 2021, 371, 926-931.	6.0	247
46	Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature, 2022, 602, 487-495.	13.7	237
47	Functional Organization of the S. cerevisiae Phosphorylation Network. Cell, 2009, 136, 952-963.	13.5	235
48	Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13513-13518.	3.3	227
49	A Genetic Interaction Map of RNA-Processing Factors Reveals Links between Sem1/Dss1-Containing Complexes and mRNA Export and Splicing. Molecular Cell, 2008, 32, 735-746.	4.5	221
50	High-throughput, quantitative analyses of genetic interactions in E. coli. Nature Methods, 2008, 5, 781-787.	9.0	214
51	Proteasome Involvement in the Repair of DNA Double-Strand Breaks. Molecular Cell, 2004, 16, 1027-1034.	4.5	207
52	H2B Ubiquitylation Acts as a Barrier to Ctk1 Nucleosomal Recruitment Prior to Removal by Ubp8 within a SAGA-Related Complex. Molecular Cell, 2007, 27, 275-288.	4.5	196
53	Hierarchical Modularity and the Evolution of Genetic Interactomes across Species. Molecular Cell, 2012, 46, 691-704.	4.5	185
54	A gene ontology inferred from molecular networks. Nature Biotechnology, 2013, 31, 38-45.	9.4	184

#	Article	IF	CITATIONS
55	The mTOR Complex Controls HIV Latency. Cell Host and Microbe, 2016, 20, 785-797.	5.1	179
56	NF-κB-Activating Complex Engaged in Response to EGFR Oncogene Inhibition Drives Tumor Cell Survival and Residual Disease in Lung Cancer. Cell Reports, 2015, 11, 98-110.	2.9	178
57	The Dengue Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing. PLoS Pathogens, 2016, 12, e1005841.	2.1	176
58	Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection. Cell Host and Microbe, 2015, 18, 109-121.	5.1	174
59	A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells. Cell Reports, 2016, 17, 1438-1452.	2.9	167
60	Global Mapping of Herpesvirus-Host Protein Complexes Reveals a Transcription Strategy for Late Genes. Molecular Cell, 2015, 57, 349-360.	4.5	165
61	Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell, 2021, 184, 2696-2714.e25.	13.5	151
62	Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science, 2021, 373, 541-547.	6.0	148
63	High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe. Nature Methods, 2007, 4, 861-866.	9.0	146
64	Crossâ€species chemogenomic profiling reveals evolutionarily conserved drug mode of action. Molecular Systems Biology, 2010, 6, 451.	3.2	143
65	Genetic interaction mapping in mammalian cells using CRISPR interference. Nature Methods, 2017, 14, 577-580.	9.0	142
66	Quantitative Genetic Interactions Reveal Biological Modularity. Cell, 2010, 141, 739-745.	13.5	140
67	Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host and Microbe, 2022, 30, 373-387.e7.	5.1	138
68	The H3K36me2 Methyltransferase Nsd1 Demarcates PRC2-Mediated H3K27me2 and H3K27me3 Domains in Embryonic Stem Cells. Molecular Cell, 2018, 70, 371-379.e5.	4.5	137
69	From Structure to Systems: High-Resolution, Quantitative Genetic Analysis of RNA Polymerase II. Cell, 2013, 154, 775-788.	13.5	132
70	Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data. PLoS Computational Biology, 2008, 4, e1000065.	1.5	128
71	A Lipid E-MAP Identifies Ubx2 as a Critical Regulator of Lipid Saturation and Lipid Bilayer Stress. Molecular Cell, 2013, 51, 519-530.	4.5	127
72	A Combined Proteomics/Genomics Approach Links Hepatitis C Virus Infection with Nonsense-Mediated mRNA Decay. Molecular Cell, 2015, 57, 329-340.	4.5	124

#	Article	IF	CITATIONS
73	Functional Overlap and Regulatory Links Shape Genetic Interactions between Signaling Pathways. Cell, 2010, 143, 991-1004.	13.5	123
74	Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. ELife, 2015, 4, .	2.8	118
75	The Cancer Cell Map Initiative: Defining the Hallmark Networks of Cancer. Molecular Cell, 2015, 58, 690-698.	4.5	117
76	Microcephaly Proteins Wdr62 and Aspm Define a Mother Centriole Complex Regulating Centriole Biogenesis, Apical Complex, and Cell Fate. Neuron, 2016, 92, 813-828.	3.8	116
77	Host Cell Interactome of HIV-1 Rev Includes RNA Helicases Involved in Multiple Facets of Virus Production. Molecular and Cellular Proteomics, 2012, 11, M111.015313.	2.5	114
78	Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration. Cell, 2022, 185, 712-728.e14.	13.5	114
79	First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G. ACS Chemical Biology, 2012, 7, 506-517.	1.6	112
80	Targeting Viral Proteostasis Limits Influenza Virus, HIV, and Dengue Virus Infection. Immunity, 2016, 44, 46-58.	6.6	110
81	CBFÎ ² Stabilizes HIV Vif to Counteract APOBEC3 at the Expense of RUNX1 Target Gene Expression. Molecular Cell, 2013, 49, 632-644.	4.5	108
82	Protein Interaction Mapping Identifies RBBP6 as a Negative Regulator of Ebola Virus Replication. Cell, 2018, 175, 1917-1930.e13.	13.5	108
83	The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. Cell, 2018, 174, 505-520.	13.5	108
84	Anti-CRISPR-Associated Proteins Are Crucial Repressors of Anti-CRISPR Transcription. Cell, 2019, 178, 1452-1464.e13.	13.5	105
85	Quantitative genetic-interaction mapping in mammalian cells. Nature Methods, 2013, 10, 432-437.	9.0	104
86	An Mtb-Human Protein-Protein Interaction Map Identifies a Switch between Host Antiviral and Antibacterial Responses. Molecular Cell, 2018, 71, 637-648.e5.	4.5	100
87	SIRT1 Deacetylates Tau and Reduces Pathogenic Tau Spread in a Mouse Model of Tauopathy. Journal of Neuroscience, 2018, 38, 3680-3688.	1.7	98
88	CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions. Nature Protocols, 2019, 14, 1-27.	5.5	98
89	Mass spectrometryâ€based protein–protein interaction networks for the study of human diseases. Molecular Systems Biology, 2021, 17, e8792.	3.2	96
90	A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nature Structural and Molecular Biology, 2010, 17, 901-908.	3.6	93

#	Article	IF	CITATIONS
91	Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities. Nature Genetics, 2022, 54, 649-659.	9.4	93
92	High-resolution network biology: connecting sequence with function. Nature Reviews Genetics, 2013, 14, 865-879.	7.7	92
93	Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Developmental Cell, 2017, 43, 744-762.e11.	3.1	92
94	Metabolic reprogramming of human CD8+ memory T cells through loss of SIRT1. Journal of Experimental Medicine, 2018, 215, 51-62.	4.2	91
95	Large dataset enables prediction of repair after CRISPR–Cas9 editing in primary T cells. Nature Biotechnology, 2019, 37, 1034-1037.	9.4	87
96	Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature, 2020, 585, 414-419.	13.7	82
97	A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight, 2017, 2, .	2.3	81
98	Quantitative Genetic Interaction Mapping Using the E-MAP Approach. Methods in Enzymology, 2010, 470, 205-231.	0.4	80
99	Cullin E3 Ligases and Their Rewiring by Viral Factors. Biomolecules, 2014, 4, 897-930.	1.8	78
100	SMYD2-Mediated Histone Methylation Contributes to HIV-1 Latency. Cell Host and Microbe, 2017, 21, 569-579.e6.	5.1	78
101	UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature, 2019, 575, 366-370.	13.7	78
102	An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nature Structural and Molecular Biology, 2009, 16, 1286-1293.	3.6	77
103	The AMBRA1 E3 ligase adaptor regulates the stability of cyclinÂD. Nature, 2021, 592, 794-798.	13.7	76
104	Yeast SREBP Cleavage Activation Requires the Golgi Dsc E3 Ligase Complex. Molecular Cell, 2011, 42, 160-171.	4.5	72
105	Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems. Cell Systems, 2016, 2, 77-88.	2.9	72
106	A systems approach to infectious disease. Nature Reviews Genetics, 2020, 21, 339-354.	7.7	72
107	Mutations in ANKLE2, a ZIKA Virus Target, Disrupt an Asymmetric Cell Division Pathway in Drosophila Neuroblasts to Cause Microcephaly. Developmental Cell, 2019, 51, 713-729.e6.	3.1	71
108	An ancient viral epidemic involving host coronavirus interacting genes more than 20,000 years ago in East Asia. Current Biology, 2021, 31, 3504-3514.e9.	1.8	71

#	Article	IF	CITATIONS
109	A scaffold protein connects type IV pili with the Chp chemosensory system to mediate activation of virulence signaling in <i>Pseudomonas aeruginosa</i> . Molecular Microbiology, 2016, 101, 590-605.	1.2	69
110	The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication. Journal of Virology, 2017, 91, .	1.5	68
111	Cyclophilin A Prevents HIV-1 Restriction in Lymphocytes by Blocking Human TRIM5α Binding to the Viral Core. Cell Reports, 2020, 30, 3766-3777.e6.	2.9	68
112	Multiple Routes to Oncogenesis Are Promoted by the Human Papillomavirus–Host Protein Network. Cancer Discovery, 2018, 8, 1474-1489.	7.7	67
113	A Chaperone-Assisted Degradation Pathway Targets Kinetochore Proteins to Ensure Genome Stability. PLoS Genetics, 2014, 10, e1004140.	1.5	66
114	A protein interaction landscape of breast cancer. Science, 2021, 374, eabf3066.	6.0	66
115	Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metabolism, 2021, 33, 1322-1341.e13.	7.2	65
116	Mutations in the X-linked <i>ATP6AP2</i> cause a glycosylation disorder with autophagic defects. Journal of Experimental Medicine, 2017, 214, 3707-3729.	4.2	62
117	Systematic Identification of Host Cell Regulators of Legionella pneumophila Pathogenesis Using a Genome-wide CRISPR Screen. Cell Host and Microbe, 2019, 26, 551-563.e6.	5.1	62
118	Chlamydia interfere with an interaction between the mannose-6-phosphate receptor and sorting nexins to counteract host restriction. ELife, 2017, 6, .	2.8	61
119	The Cellular NMD Pathway Restricts Zika Virus Infection and Is Targeted by the Viral Capsid Protein. MBio, 2018, 9, .	1.8	60
120	Acetylome Profiling Reveals Overlap in the Regulation of Diverse Processes by Sirtuins, Gcn5, and Esa1. Molecular and Cellular Proteomics, 2015, 14, 162-176.	2.5	59
121	Scoring Large cale Affinity Purification Mass Spectrometry Datasets with MiST. Current Protocols in Bioinformatics, 2015, 49, 8.19.1-8.19.16.	25.8	58
122	Unbiased Proteomic Profiling Uncovers a Targetable GNAS/PKA/PP2A Axis in Small Cell Lung Cancer Stem Cells. Cancer Cell, 2020, 38, 129-143.e7.	7.7	57
123	Purification and characterization of HIV–human protein complexes. Methods, 2011, 53, 13-19.	1.9	56
124	Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G. PLoS Pathogens, 2012, 8, e1003085.	2.1	55
125	CDK11 in TREX/THOC Regulates HIV mRNA 3′ End Processing. Cell Host and Microbe, 2015, 18, 560-570.	5.1	53
126	Genome-Wide Association Data Reveal a Global Map of Genetic Interactions among Protein Complexes. PLoS Genetics, 2009, 5, e1000782.	1.5	52

#	Article	IF	CITATIONS
127	Identification of antiviral roles for the exon–junction complex and nonsense-mediated decay in flaviviral infection. Nature Microbiology, 2019, 4, 985-995.	5.9	52
128	Enterovirus pathogenesis requires the host methyltransferase SETD3. Nature Microbiology, 2019, 4, 2523-2537.	5.9	51
129	Replication Fork Collapse and Genome Instability in a Deoxycytidylate Deaminase Mutant. Molecular and Cellular Biology, 2012, 32, 4445-4454.	1.1	50
130	SUMO is a pervasive regulator of meiosis. ELife, 2021, 10, .	2.8	50
131	Cyclin-Dependent Kinase 12 Increases 3′ End Processing of Growth Factor-Induced c-FOS Transcripts. Molecular and Cellular Biology, 2015, 35, 468-478.	1.1	49
132	The RNA Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity. Cell, 2017, 169, 679-692.e14.	13.5	48
133	Influenza virus infection causes global RNAPII termination defects. Nature Structural and Molecular Biology, 2018, 25, 885-893.	3.6	48
134	Differential genetic interactions of yeast stress response <scp>MAPK</scp> pathways. Molecular Systems Biology, 2015, 11, 800.	3.2	47
135	From Systems to Structure: Bridging Networks and Mechanism. Molecular Cell, 2013, 49, 222-231.	4.5	46
136	Structural basis of CD4 downregulation by HIV-1 Nef. Nature Structural and Molecular Biology, 2020, 27, 822-828.	3.6	44
137	The Landscape of Human Cancer Proteins Targeted by SARS-CoV-2. Cancer Discovery, 2020, 10, 916-921.	7.7	44
138	Suppression of C9orf72 RNA repeat-induced neurotoxicity by the ALS-associated RNA-binding protein Zfp106. ELife, 2017, 6, .	2.8	44
139	Dynamic post-translational modification profiling of Mycobacterium tuberculosis-infected primary macrophages. ELife, 2020, 9, .	2.8	44
140	Regulation of Sufu activity by p66Î ² and Mycbp provides new insight into vertebrate Hedgehog signaling. Genes and Development, 2014, 28, 2547-2563.	2.7	42
141	Lineage-Specific Viral Hijacking of Non-canonical E3ÂUbiquitin Ligase Cofactors in the Evolution of Vif Anti-APOBEC3 Activity. Cell Reports, 2015, 11, 1236-1250.	2.9	42
142	The Tyrosine Kinase Inhibitor Gefitinib Restricts <i>Mycobacterium tuberculosis</i> Growth through Increased Lysosomal Biogenesis and Modulation of Cytokine Signaling. ACS Infectious Diseases, 2017, 3, 564-574.	1.8	42
143	ARIH2 Is a Vif-Dependent Regulator of CUL5-Mediated APOBEC3G Degradation in HIV Infection. Cell Host and Microbe, 2019, 26, 86-99.e7.	5.1	42
144	A Herpesvirus Protein Selectively Inhibits Cellular mRNA Nuclear Export. Cell Host and Microbe, 2016, 20, 642-653.	5.1	40

#	Article	IF	CITATIONS
145	Smoothened transduces Hedgehog signals via activity-dependent sequestration of PKA catalytic subunits. PLoS Biology, 2021, 19, e3001191.	2.6	40
146	Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution. Virology, 2021, 558, 145-151.	1.1	40
147	Transcription factor protein interactomes reveal genetic determinants in heart disease. Cell, 2022, 185, 794-814.e30.	13.5	39
148	Thioredoxin-related Protein 32 Is an Arsenite-regulated Thiol Reductase of the Proteasome 19 S Particle. Journal of Biological Chemistry, 2009, 284, 15233-15245.	1.6	38
149	Discovery and functional characterization of a neomorphic PTEN mutation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13976-13981.	3.3	38
150	Adventures in time and space. RNA Biology, 2014, 11, 313-319.	1.5	37
151	Comparative mapping of host–pathogen protein–protein interactions. Current Opinion in Microbiology, 2015, 27, 62-68.	2.3	37
152	A protein network map of head and neck cancer reveals PIK3CA mutant drug sensitivity. Science, 2021, 374, eabf2911.	6.0	37
153	Systematic Triple-Mutant Analysis Uncovers Functional Connectivity between Pathways Involved in Chromosome Regulation. Cell Reports, 2013, 3, 2168-2178.	2.9	36
154	Endosomal cAMP production broadly impacts the cellular phosphoproteome. Journal of Biological Chemistry, 2021, 297, 100907.	1.6	36
155	Proteome Imbalance of Mitochondrial Electron Transport Chain in Brown Adipocytes Leads to Metabolic Benefits. Cell Metabolism, 2018, 27, 616-629.e4.	7.2	34
156	Sympathetic inputs regulate adaptive thermogenesis in brown adipose tissue through cAMP-Salt inducible kinase axis. Scientific Reports, 2018, 8, 11001.	1.6	33
157	Hybrid Gene Origination Creates Human-Virus Chimeric Proteins during Infection. Cell, 2020, 181, 1502-1517.e23.	13.5	33
158	Combined Action of Histone Reader Modules Regulates NuA4 Local Acetyltransferase Function but Not Its Recruitment on the Genome. Molecular and Cellular Biology, 2016, 36, 2768-2781.	1.1	32
159	Two Accessory Proteins Govern MmpL3 Mycolic Acid Transport in Mycobacteria. MBio, 2019, 10, .	1.8	32
160	Chemical Genetics of Rapamycin-Insensitive TORC2 in S.Âcerevisiae. Cell Reports, 2013, 5, 1725-1736.	2.9	31
161	Cross-talk Signaling between HER3 and HPV16 E6 and E7 Mediates Resistance to PI3K Inhibitors in Head and Neck Cancer. Cancer Research, 2018, 78, 2383-2395.	0.4	31
162	Non-degradative Ubiquitination of Protein Kinases. PLoS Computational Biology, 2016, 12, e1004898.	1.5	31

#	Article	IF	CITATIONS
163	G Protein–Coupled Receptor Endocytosis Confers Uniformity in Responses to Chemically Distinct Ligands. Molecular Pharmacology, 2017, 91, 145-156.	1.0	30
164	PJA2 ubiquitinates the HIV-1 Tat protein with atypical chain linkages to activate viral transcription. Scientific Reports, 2017, 7, 45394.	1.6	30
165	SIRT3 controls brown fat thermogenesis by deacetylation regulation of pathways upstream of UCP1. Molecular Metabolism, 2019, 25, 35-49.	3.0	30
166	Efficient generation of isogenic primary human myeloid cells using CRISPR-Cas9 ribonucleoproteins. Cell Reports, 2021, 35, 109105.	2.9	29
167	Interpretation of cancer mutations using a multiscale map of protein systems. Science, 2021, 374, eabf3067.	6.0	29
168	The HIV-1 Tat protein recruits a ubiquitin ligase to reorganize the 7SK snRNP for transcriptional activation. ELife, 2018, 7, .	2.8	29
169	Set5 and Set1 cooperate to repress gene expression at telomeres and retrotransposons. Epigenetics, 2014, 9, 513-522.	1.3	28
170	A Pil1-Sle1-Syj1-Tax4 functional pathway links eisosomes with PI(4,5)P2 regulation. Journal of Cell Science, 2014, 127, 1318-26.	1.2	28
171	Protein Moonlighting Revealed by Noncatalytic Phenotypes of Yeast Enzymes. Genetics, 2018, 208, 419-431.	1.2	28
172	Heart failure drug proscillaridin A targets MYC overexpressing leukemia through global loss of lysine acetylation. Journal of Experimental and Clinical Cancer Research, 2019, 38, 251.	3.5	27
173	Proteomic Approaches to Study SARS-CoV-2 Biology and COVID-19 Pathology. Journal of Proteome Research, 2021, 20, 1133-1152.	1.8	27
174	A functional map of HIV-host interactions in primary human T cells. Nature Communications, 2022, 13, 1752.	5.8	27
175	A ciliopathy complex builds distal appendages to initiate ciliogenesis. Journal of Cell Biology, 2021, 220, .	2.3	26
176	Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19. Life Science Alliance, 2022, 5, e202101200.	1.3	26
177	Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation. Nature Microbiology, 2017, 2, 17022.	5.9	25
178	Genetic interaction mapping informs integrative structure determination of protein complexes. Science, 2020, 370, .	6.0	24
179	Genetic Interaction Mapping Reveals a Role for the SWI/SNF Nucleosome Remodeler in Spliceosome Activation in Fission Yeast. PLoS Genetics, 2015, 11, e1005074.	1.5	23
180	Mycobacterial Mutagenesis and Drug Resistance Are Controlled by Phosphorylation- and Cardiolipin-Mediated Inhibition of the RecA Coprotease. Molecular Cell, 2018, 72, 152-161.e7.	4.5	23

#	Article	IF	CITATIONS
181	Restriction factor compendium for influenza A virus reveals a mechanism for evasion of autophagy. Nature Microbiology, 2021, 6, 1319-1333.	5.9	23
182	Dispersed Sites of HIV Vif-Dependent Polyubiquitination in the DNA Deaminase APOBEC3F. Journal of Molecular Biology, 2013, 425, 1172-1182.	2.0	22
183	The histone variant H2A.Z promotes splicing of weak introns. Genes and Development, 2017, 31, 688-701.	2.7	22
184	Spindle Checkpoint Factors Bub1 and Bub2 Promote DNA Double-Strand Break Repair by Nonhomologous End Joining. Molecular and Cellular Biology, 2015, 35, 2448-2463.	1.1	21
185	The Yeast DNA Damage Checkpoint Kinase Rad53 Targets the Exoribonuclease, Xrn1. G3: Genes, Genomes, Genetics, 2018, 8, 3931-3944.	0.8	21
186	Therapeutic implications of activating noncanonical PIK3CA mutations in head and neck squamous cell carcinoma. Journal of Clinical Investigation, 2021, 131, .	3.9	20
187	PEAK3/C19orf35 pseudokinase, a new NFK3 kinase family member, inhibits CrkII through dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15495-15504.	3.3	19
188	Nonsense-mediated decay regulates key components of homologous recombination. Nucleic Acids Research, 2016, 44, 5218-5230.	6.5	18
189	Virus-Like Vesicles of Kaposi's Sarcoma-Associated Herpesvirus Activate Lytic Replication by Triggering Differentiation Signaling. Journal of Virology, 2017, 91, .	1.5	17
190	A Quantitative Genetic Interaction Map of HIV Infection. Molecular Cell, 2020, 78, 197-209.e7.	4.5	17
191	Fab-based inhibitors reveal ubiquitin independent functions for HIV Vif neutralization of APOBEC3 restriction factors. PLoS Pathogens, 2018, 14, e1006830.	2.1	17
192	Mapping genetic interactions in cancer: a road to rational combination therapies. Genome Medicine, 2019, 11, 62.	3.6	16
193	The RNA helicase DHX16 recognizes specific viral RNA to trigger RIG-I-dependent innate antiviral immunity. Cell Reports, 2022, 38, 110434.	2.9	16
194	Quantitative analysis of triple-mutant genetic interactions. Nature Protocols, 2014, 9, 1867-1881.	5.5	15
195	Systems Analyses Reveal Shared and Diverse Attributes of Oct4 Regulation in Pluripotent Cells. Cell Systems, 2015, 1, 141-151.	2.9	15
196	Quantitative Yeast Genetic Interaction Profiling of Bacterial Effector Proteins Uncovers a Role for the Human Retromer in Salmonella Infection. Cell Systems, 2018, 7, 323-338.e6.	2.9	15
197	Mapping the protein–protein and genetic interactions of cancer to guide precision medicine. Current Opinion in Genetics and Development, 2019, 54, 110-117.	1.5	15
198	Brown adipocyte ATF4 activation improves thermoregulation and systemic metabolism. Cell Reports, 2021, 36, 109742.	2.9	15

#	Article	IF	CITATIONS
199	Viral E protein neutralizes BET protein-mediated post-entry antagonism of SARS-CoV-2. Cell Reports, 2022, 40, 111088.	2.9	15
200	The next frontier of systems biology: higher-order and interspecies interactions. Genome Biology, 2010, 11, 208.	13.9	14
201	Prediction of Functionally Important Phospho-Regulatory Events in Xenopus laevis Oocytes. PLoS Computational Biology, 2015, 11, e1004362.	1.5	14
202	From systems to structure — using genetic data to model protein structures. Nature Reviews Genetics, 2022, 23, 342-354.	7.7	14
203	Conditional Genetic Interactions of <i>RTT107</i> , <i>SLX4</i> , and <i>HRQ1</i> Reveal Dynamic Networks upon DNA Damage in <i>S. cerevisiae</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1059-1069.	0.8	13
204	Yeast Xâ€chromosomeâ€associated protein 5 (Xap5) functions with H2A.Z to suppress aberrant transcripts. EMBO Reports, 2014, 15, 894-902.	2.0	13
205	CRL4 ^{AMBRA1} targets Elongin C for ubiquitination and degradation to modulate CRL5 signaling. EMBO Journal, 2018, 37, .	3.5	13
206	Systems-level effects of allosteric perturbations to a model molecular switch. Nature, 2021, 599, 152-157.	13.7	13
207	SMARCA2-regulated host cell factors are required for MxA restriction of influenza A viruses. Scientific Reports, 2018, 8, 2092.	1.6	12
208	Synthetic Essentiality of Metabolic Regulator PDHK1 in PTEN-Deficient Cells and Cancers. Cell Reports, 2019, 28, 2317-2330.e8.	2.9	12
209	Virus and host interactions critical for filoviral RNA synthesis as therapeutic targets. Antiviral Research, 2019, 162, 90-100.	1.9	12
210	Genetic analysis reveals functions of atypical polyubiquitin chains. ELife, 2018, 7, .	2.8	12
211	Global post-translational modification profiling of HIV-1-infected cells reveals mechanisms of host cellular pathway remodeling. Cell Reports, 2022, 39, 110690.	2.9	12
212	Identification of a BET Family Bromodomain/Casein Kinase II/TAF-Containing Complex as a Regulator of Mitotic Condensin Function. Cell Reports, 2014, 6, 892-905.	2.9	11
213	Determinants for degradation of SAMHD1, Mus81 and induction of G 2 arrest in HIV-1 Vpr and SIVagm Vpr. Virology, 2015, 477, 10-17.	1.1	11
214	Genetic Interaction Landscape Reveals Critical Requirements for <i>Schizosaccharomyces pombe</i> Brc1 in DNA Damage Response Mutants. G3: Genes, Genomes, Genetics, 2015, 5, 953-962.	0.8	11
215	Evolutionarily conserved genetic interactions with budding and fission yeast MutS identify orthologous relationships in mismatch repair-deficient cancer cells. Genome Medicine, 2014, 6, 68.	3.6	10
216	Chemical-genetic interrogation of RNA polymerase mutants reveals structure-function relationships and physiological tradeoffs. Molecular Cell, 2021, 81, 2201-2215.e9.	4.5	10

#	Article	IF	CITATIONS
217	Caveolin-1 and Sox-2 are predictive biomarkers of cetuximab response in head and neck cancer. JCI Insight, 2021, 6, .	2.3	10
218	Target Discovery for Host-Directed Antiviral Therapies: Application of Proteomics Approaches. MSystems, 2021, 6, e0038821.	1.7	10
219	Genetic interaction analysis of point mutations enables interrogation of gene function at a residueâ€level resolution. BioEssays, 2014, 36, 706-713.	1.2	9
220	Regulation of Skn7-dependent, oxidative stress-induced genes by the RNA polymerase II-CTD phosphatase, Fcp1, and Mediator kinase subunit, Cdk8, in yeast. Journal of Biological Chemistry, 2019, 294, 16080-16094.	1.6	9
221	mRNA display with library of even-distribution reveals cellular interactors of influenza virus NS1. Nature Communications, 2020, 11, 2449.	5.8	8
222	Nonâ€canonical prolineâ€tyrosine interactions with multiple host proteins regulate Ebola virus infection. EMBO Journal, 2021, 40, e105658.	3.5	8
223	The E3 ligase TRIM1 ubiquitinates LRRK2 and controls its localization, degradation, and toxicity. Journal of Cell Biology, 2022, 221, .	2.3	8
224	A Whole-Genome CRISPR Screen Identifies AHR Loss as a Mechanism of Resistance to a PARP7 Inhibitor. Molecular Cancer Therapeutics, 2022, 21, 1076-1089.	1.9	8
225	Creating collaboration by breaking down scientific barriers. Cell, 2021, 184, 2271-2275.	13.5	7
226	Prb1 Protease Activity Is Required for Its Recognition by the F-Box Protein Saf1. Biochemistry, 2015, 54, 4423-4426.	1.2	6
227	DLX1 and the NuRD complex cooperate in enhancer decommissioning and transcriptional repression. Development (Cambridge), 2022, 149, .	1.2	6
228	High-Throughput Quantitative Genetic Interaction Mapping in the Fission YeastSchizosaccharomyces pombe. Cold Spring Harbor Protocols, 2018, 2018, pdb.top079905.	0.2	5
229	The E3 Ubiquitin-Protein Ligase Cullin 3 Regulates HIV-1 Transcription. Cells, 2020, 9, 2010.	1.8	5
230	Leveraging modeling and simulation to optimize the therapeutic window for epigenetic modifier drugs. , 2022, 235, 108162.		5
231	Genetic Interaction Mapping in <i>Schizosaccharomyces pombe</i> Using the Pombe Epistasis Mapper (PEM) System and a ROTOR HDA Colony Replicating Robot in a 1536 Array Format. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot091975.	0.2	4
232	Characterization of an A3G-VifHIV-1-CRL5-CBFβ Structure Using a Cross-linking Mass Spectrometry Pipeline for Integrative Modeling of Host–Pathogen Complexes. Molecular and Cellular Proteomics, 2021, 20, 100132.	2.5	4
233	Genetic Interaction Score (S-Score) Calculation, Clustering, and Visualization of Genetic Interaction Profiles for Yeast. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot091983.	0.2	3
234	The kinase lsr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. PLoS Genetics, 2020, 16, e1008840.	1.5	3

#	Article	IF	CITATIONS
235	Ankle2, a Target of Zika Virus, Controls Asymmetric Cell Division of Neuroblasts and Uncovers a Novel Microcephaly Pathway. SSRN Electronic Journal, 0, , .	0.4	3
236	DNA Preparation from Schizosaccharomyces pombe. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot091959.	0.2	2
237	Comparative Analysis of T-Cell Spatial Proteomics and the Influence of HIV Expression. Molecular and Cellular Proteomics, 2022, 21, 100194.	2.5	2
238	Transformation of Schizosaccharomyces pombe in a 96-Well Format. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot091942.	0.2	1
239	TCO, a Putative Transcriptional Regulator in Arabidopsis, Is a Target of the Protein Kinase CK2. International Journal of Molecular Sciences, 2019, 20, 99.	1.8	0
240	Genetic Interaction mapping of essential genes in <i>Saccharomyces cerevisiae</i> . FASEB Journal, 2007, 21, A1004.	0.2	0
241	Physical hostâ€pathogen networks. FASEB Journal, 2012, 26, 89.1.	0.2	0
242	Integrative structure determination of histones H3 and H4 using genetic interactions. FEBS Journal, 2023, 290, 2565-2575.	2.2	0
243	The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. , 2020, 16, e1008840.		0
244	The kinase lsr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. , 2020, 16, e1008840.		0
245	The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. , 2020, 16, e1008840.		0
246	The kinase lsr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. , 2020, 16, e1008840.		0
247	Workshop-based learning and networking: a scalable model for research capacity strengthening in low- and middle-income countries. Global Health Action, 2022, 15, .	0.7	0