List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9527961/publications.pdf Version: 2024-02-01

VIDENC HU

#	Article	IF	CITATIONS
1	Voice-Assisted Image Labeling for Endoscopic Ultrasound Classification Using Neural Networks. IEEE Transactions on Medical Imaging, 2022, 41, 1311-1319.	8.9	9
2	An unsupervised learning-based shear wave tracking method for ultrasound elastography. , 2022, , .		0
3	Deep hashing for global registration of untracked 2D laparoscopic ultrasound to CT. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 1461-1468.	2.8	2
4	lmage quality assessment for machine learning tasks using meta-reinforcement learning. Medical Image Analysis, 2022, 78, 102427.	11.6	19
5	Task model-specific operator skill assessment in routine fetal ultrasound scanning. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 1437-1444.	2.8	4
6	Imaging features for the prediction of clinical endpoints in chronic liver disease: a scoping review protocol. BMJ Open, 2022, 12, e053204.	1.9	0
7	Cross-Modality Image Registration Using a Training-Time Privileged Third Modality. IEEE Transactions on Medical Imaging, 2022, 41, 3421-3431.	8.9	Ο
8	False Positive Multiparametric Magnetic Resonance Imaging Phenotypes in the Biopsy-naÃ ⁻ ve Prostate: Are They Distinct from Significant Cancer-associated Lesions? Lessons from PROMIS. European Urology, 2021, 79, 20-29.	1.9	13
9	Adaptable Image Quality Assessment Using Meta-Reinforcement Learning of Task Amenability. Lecture Notes in Computer Science, 2021, , 191-201.	1.3	4
10	Al reflections in 2020. Nature Machine Intelligence, 2021, 3, 2-8.	16.0	7
11	Morphological Change Forecasting For Prostate Glands Using Feature-Based Registration And Kernel Density Extrapolation. , 2021, , .		1
12	Mapping PSA density to outcome of MRI-based active surveillance for prostate cancer through joint longitudinal-survival models. Prostate Cancer and Prostatic Diseases, 2021, 24, 1028-1031.	3.9	10
13	An unsupervised learning approach to ultrasound strain elastography with spatio-temporal consistency. Physics in Medicine and Biology, 2021, 66, 175031.	3.0	16
14	Real-time multimodal image registration with partial intraoperative point-set data. Medical Image Analysis, 2021, 74, 102231.	11.6	14
15	Lung Ultrasound Segmentation and Adaptation Between COVID-19 and Community-Acquired Pneumonia. Lecture Notes in Computer Science, 2021, , 45-53.	1.3	4
16	Image Registration. , 2021, , 632-639.		0
17	A critical evaluation of visual proportion of Gleason 4 and maximum cancer core length quantified by histopathologists. Scientific Reports, 2020, 10, 17177.	3.3	4
18	The challenges of deploying artificial intelligence models in a rapidly evolving pandemic. Nature Machine Intelligence, 2020, 2, 298-300.	16.0	45

#	Article	IF	CITATIONS
19	Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification. Lecture Notes in Computer Science, 2020, , 544-552.	1.3	5
20	An Unsupervised Approach to Ultrasound Elastography with End-to-end Strain Regularisation. Lecture Notes in Computer Science, 2020, , 573-582.	1.3	12
21	Prostate Motion Modelling Using Biomechanically-Trained Deep Neural Networks on Unstructured Nodes. Lecture Notes in Computer Science, 2020, , 650-659.	1.3	4
22	DeepReg: a deep learning toolkit for medical image registration. Journal of Open Source Software, 2020, 5, 2705.	4.6	19
23	Image Registration. , 2020, , 1-8.		2
24	Multimodality Biomedical Image Registration Using Free Point Transformer Networks. Lecture Notes in Computer Science, 2020, , 116-125.	1.3	7
25	Longitudinal Image Registration with Temporal-Order and Subject-Specificity Discrimination. Lecture Notes in Computer Science, 2020, , 243-252.	1.3	5
26	Automatic segmentation of prostate MRI using convolutional neural networks: Investigating the impact of network architecture on the accuracy of volume measurement and MRI-ultrasound registration. Medical Image Analysis, 2019, 58, 101558.	11.6	45
27	The SmartTarget Biopsy Trial: A Prospective, Within-person Randomised, Blinded Trial Comparing the Accuracy of Visual-registration and Magnetic Resonance Imaging/Ultrasound Image-fusion Targeted Biopsies for Prostate Cancer Risk Stratification. European Urology, 2019, 75, 733-740.	1.9	67
28	Conditional Segmentation in Lieu of Image Registration. Lecture Notes in Computer Science, 2019, , 401-409.	1.3	8
29	Technical Note: Error metrics for estimating the accuracy of needle/instrument placement during transperineal magnetic resonance/ultrasoundâ€guided prostate interventions. Medical Physics, 2018, 45, 1408-1414.	3.0	7
30	NiftyNet: a deep-learning platform for medical imaging. Computer Methods and Programs in Biomedicine, 2018, 158, 113-122.	4.7	407
31	Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks. IEEE Transactions on Medical Imaging, 2018, 37, 1822-1834.	8.9	436
32	Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 875-883.	2.8	6
33	Adversarial Deformation Regularization for Training Image Registration Neural Networks. Lecture Notes in Computer Science, 2018, , 774-782.	1.3	42
34	Inter-site Variability in Prostate Segmentation Accuracy Using Deep Learning. Lecture Notes in Computer Science, 2018, , 506-514.	1.3	37
35	Label-driven weakly-supervised learning for multimodal deformarle image registration. , 2018, , .		67
36	Immunohistochemical biomarker validation in highly selective needle biopsy microarrays derived from mpMRlâ€characterized prostates. Prostate, 2018, 78, 1229-1237.	2.3	9

#	Article	IF	CITATIONS
37	Weakly-supervised convolutional neural networks for multimodal image registration. Medical Image Analysis, 2018, 49, 1-13.	11.6	280
38	Accuracy of Transperineal Targeted Prostate Biopsies, Visual Estimation and Image Fusion in Men Needing Repeat Biopsy in the PICTURE Trial. Journal of Urology, 2018, 200, 1227-1234.	0.4	38
39	Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network. Journal of Medical Imaging, 2018, 5, 1.	1.5	19
40	Integration of spatial information in convolutional neural networks for automatic segmentation of intraoperative transrectal ultrasound images. Journal of Medical Imaging, 2018, 6, 1.	1.5	23
41	Automatic slice segmentation of intraoperative transrectal ultrasound images using convolutional neural networks. , 2018, , .		9
42	Technical note: automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalising neural network. , 2018, , .		0
43	Development and Phantom Validation of a 3-D-Ultrasound-Guided System for Targeting MRI-Visible Lesions During Transrectal Prostate Biopsy. IEEE Transactions on Biomedical Engineering, 2017, 64, 946-958.	4.2	14
44	The PICTURE study: diagnostic accuracy of multiparametric MRI in men requiring a repeat prostate biopsy. British Journal of Cancer, 2017, 116, 1159-1165.	6.4	90
45	An evaluation of irreversible electroporation thresholds in human prostate cancer and potential correlations to physiological measurements. APL Bioengineering, 2017, 1, 016101.	6.2	17
46	Intraoperative Organ Motion Models with an Ensemble of Conditional Generative Adversarial Networks. Lecture Notes in Computer Science, 2017, , 368-376.	1.3	8
47	Towards Image-Guided Pancreas and Biliary Endoscopy: Automatic Multi-organ Segmentation on Abdominal CT with Dense Dilated Networks. Lecture Notes in Computer Science, 2017, , 728-736.	1.3	28
48	MP33-20 THE SMARTTARGET BIOPSY TRIAL: A PROSPECTIVE PAIRED BLINDED TRIAL WITH RANDOMISATION TO COMPARE VISUAL-ESTIMATION AND IMAGE-FUSION TARGETED PROSTATE BIOPSIES. Journal of Urology, 2017, 197, .	0.4	4
49	Designing image segmentation studies: Statistical power, sample size and reference standard quality. Medical Image Analysis, 2017, 42, 44-59.	11.6	12
50	Applications of Statistical Deformation Model. , 2017, , 301-327.		0
51	Biomechanical modeling constrained surfaceâ€based image registration for prostate MR guided TRUS biopsy. Medical Physics, 2015, 42, 2470-2481.	3.0	18
52	Identifying the Index Lesion with Template Prostate Mapping Biopsies. Journal of Urology, 2015, 193, 1185-1190.	0.4	16
53	Population-based prediction of subject-specific prostate deformation for MR-to-ultrasound image registration. Medical Image Analysis, 2015, 26, 332-344.	11.6	33
54	NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics. International Journal of Computer Assisted Radiology and Surgery, 2015, 10, 1077-1095.	2.8	58

#	Article	IF	CITATIONS
55	Hybrid Decision Forests for Prostate Segmentation in Multi-channel MR Images. , 2014, , .		2
56	Prostate Cancer Risk Inflation as a Consequence of Image-targeted Biopsy of the Prostate: A Computer Simulation Study. European Urology, 2014, 65, 628-634.	1.9	55
57	The PICTURE study — Prostate Imaging (multi-parametric MRI and Prostate HistoScanning™) Compared to Transperineal Ultrasound guided biopsy for significant prostate cancer Risk Evaluation. Contemporary Clinical Trials, 2014, 37, 69-83.	1.8	50
58	Imageâ€directed, tissueâ€preserving focal therapy of prostate cancer: a feasibility study of a novel deformable magnetic resonanceâ€ultrasound (<scp>MRâ€US</scp>) registration system. BJU International, 2013, 112, 594-601.	2.5	45
59	Surface-based prostate registration with biomechanical regularization. , 2013, , .		2
60	The Accuracy of Different Biopsy Strategies for the Detection of Clinically Important Prostate Cancer: A Computer Simulation. Journal of Urology, 2012, 188, 974-980.	0.4	84
61	MR to ultrasound registration for image-guided prostate interventions. Medical Image Analysis, 2012, 16, 687-703.	11.6	148
62	A biopsy simulation study to assess the accuracy of several transrectal ultrasonography (TRUS)â€biopsy strategies compared with template prostate mapping biopsies in patients who have undergone radical prostatectomy. BJU International, 2012, 110, 812-820.	2.5	79
63	Modelling Prostate Motion for Data Fusion During Image-Guided Interventions. IEEE Transactions on Medical Imaging, 2011, 30, 1887-1900.	8.9	46
64	A comparison of the accuracy of statistical models of prostate motion trained using data from biomechanical simulations. Progress in Biophysics and Molecular Biology, 2010, 103, 262-272.	2.9	13
65	MR to Ultrasound Image Registration for Guiding Prostate Biopsy and Interventions. Lecture Notes in Computer Science, 2009, 12, 787-794.	1.3	16
66	Modelling Prostate Gland Motion for Image-Guided Interventions. Lecture Notes in Computer Science, 2008, , 79-88.	1.3	5
67	A Statistical Motion Model Based on Biomechanical Simulations for Data Fusion during Image-Guided Prostate Interventions. Lecture Notes in Computer Science, 2008, 11, 737-744.	1.3	9