Herbert Y Meltzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9527878/publications.pdf

Version: 2024-02-01

213 papers

19,293 citations

64 h-index 134 g-index

220 all docs

220 docs citations

times ranked

220

12771 citing authors

#	Article	IF	CITATIONS
1	Clozapine Treatment for Suicidality in Schizophrenia <subtitle>International Suicide Prevention Trial (InterSePT)</subtitle> . Archives of General Psychiatry, 2003, 60, 82.	12.3	1,200
2	Neurocognitive Effects of Antipsychotic Medications in Patients With Chronic Schizophrenia in the CATIE Trial. Archives of General Psychiatry, 2007, 64, 633.	12.3	928
3	Effectiveness of Clozapine Versus Olanzapine, Quetiapine, and Risperidone in Patients With Chronic Schizophrenia Who Did Not Respond to Prior Atypical Antipsychotic Treatment. American Journal of Psychiatry, 2006, 163, 600-610.	7.2	760
4	H1-Histamine Receptor Affinity Predicts Short-Term Weight Gain for Typical and Atypical Antipsychotic Drugs. Neuropsychopharmacology, 2003, 28, 519-526.	5 . 4	694
5	Serotonin receptors: their key role in drugs to treat schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 1159-1172.	4.8	670
6	The Role of Serotonin in Antipsychotic Drug Action. Neuropsychopharmacology, 1999, 21, 106S-115S.	5 . 4	615
7	Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology, 1989, 99, S18-S27.	3.1	534
8	A meta-analysis of neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia. International Journal of Neuropsychopharmacology, 2005, 8, 457-472.	2.1	516
9	5â€HT _{2A} and D ₂ receptor blockade increases cortical DA release via 5â€HT _{1A} receptor activation: a possible mechanism of atypical antipsychoticâ€induced cortical dopamine release. Journal of Neurochemistry, 2001, 76, 1521-1531.	3.9	490
10	Treatment-Resistant Schizophrenia - The Role of Clozapine. Current Medical Research and Opinion, 1997, 14, 1-20.	1.9	403
11	A Genome-Wide Investigation of SNPs and CNVs in Schizophrenia. PLoS Genetics, 2009, 5, e1000373.	3.5	383
12	Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biological Psychiatry, 1993, 34, 702-712.	1.3	366
13	Update on Typical and Atypical Antipsychotic Drugs. Annual Review of Medicine, 2013, 64, 393-406.	12.2	337
14	Placebo-Controlled Evaluation of Four Novel Compounds for the Treatment of Schizophrenia and Schizoaffective Disorder. American Journal of Psychiatry, 2004, 161, 975-984.	7.2	330
15	Cloning, Characterization, and Chromosomal Localization of a Human 5â€HT ₆ Serotonin Receptor. Journal of Neurochemistry, 1996, 66, 47-56.	3.9	329
16	Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Research, 1997, 66, 1-11.	3.3	322
17	Pimavanserin, a Serotonin2A Receptor Inverse Agonist, for the Treatment of Parkinson's Disease Psychosis. Neuropsychopharmacology, 2010, 35, 881-892.	5.4	265
18	Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacology, 2009, 205, 119-128.	3.1	240

#	Article	IF	Citations
19	Lurasidone in the Treatment of Schizophrenia: A Randomized, Double-Blind, Placebo- and Olanzapine-Controlled Study. American Journal of Psychiatry, 2011, 168, 957-967.	7.2	228
20	Behavioral rating scales for assessing phencyclidine-induced locomotor activity, stereotypes behavior and ataxia in rats. European Journal of Pharmacology, 1979, 59, 169-179.	3.5	225
21	Serotonin Subtype 2 Receptor Genes and Clinical Response to Clozapine in Schizophrenia Patients. Neuropsychopharmacology, 1998, 19, 123-132.	5.4	220
22	Atypical, but Not Typical, Antipsychotic Drugs Increase Cortical Acetylcholine Release without an Effect in the Nucleus Accumbens or Striatum. Neuropsychopharmacology, 2002, 26, 325-339.	5.4	218
23	Antipsychotic Drugs: Comparison in Animal Models of Efficacy, Neurotransmitter Regulation, and Neuroprotection. Pharmacological Reviews, 2008, 60, 358-403.	16.0	213
24	In vivo actions of atypical antipsychotic drug on serotonergic and dopaminergic systems. Progress in Brain Research, 2008, 172, 177-197.	1.4	210
25	Atypical antipsychotic drugs, quetiapine, iloperidone, and melperone, preferentially increase dopamine and acetylcholine release in rat medial prefrontal cortex: role of 5-HT1A receptor agonism. Brain Research, 2002, 956, 349-357.	2.2	204
26	Enhancement of Cognitive Performance in Schizophrenia by Addition of Tandospirone to Neuroleptic Treatment. American Journal of Psychiatry, 2001, 158, 1722-1725.	7.2	195
27	Serotonergic Dysfunction in Depression. British Journal of Psychiatry, 1989, 155, 25-31.	2.8	192
28	Common variants conferring risk of schizophrenia: A pathway analysis of GWAS data. Schizophrenia Research, 2010, 122, 38-42.	2.0	190
29	Clozapine. Clinical Schizophrenia and Related Psychoses, 2012, 6, 134-144.	1.4	183
30	Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. European Journal of Pharmacology, 2004, 493, 75-83.	3.5	175
31	A Double-Blind Controlled Study of Adjunctive Treatment With Risperidone in Schizophrenic Patients Partially Responsive to Clozapine. Journal of Clinical Psychiatry, 2005, 66, 63-72.	2.2	166
32	Serotonin1A receptors are increased in postmortem prefrontal cortex in schizophrenia. Brain Research, 1996, 708, 209-214.	2.2	155
33	Does stimulation of 5-HT1A receptors improve cognition in schizophrenia?. Behavioural Brain Research, 2008, 195, 98-102.	2.2	153
34	The effect of tandospirone, a serotonin1A agonist, on memory function in schizophrenia. Biological Psychiatry, 2001, 49, 861-868.	1.3	150
35	Association of the Mscl Polymorphism of the Dopamine D3 Receptor Gene with Tardive Dyskinesia in Schizophrenia. Neuropsychopharmacology, 1999, 21, 17-27.	5.4	147
36	WAY-163909 [(7bR,10aR)-1,2,3,4,8,9,10,10a-Octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole]: A Novel 5-Hydroxytryptamine 2C Receptor-Selective Agonist with Preclinical Antipsychotic-Like Activity. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 486-496.	2.5	142

#	Article	IF	Citations
37	A Randomized, Double-Blind Comparison of Clozapine and High-Dose Olanzapine in Treatment-Resistant Patients With Schizophrenia. Journal of Clinical Psychiatry, 2008, 69, 274-285.	2.2	136
38	The Novel Object Recognition Test in Rodents in Relation to Cognitive Impairment in Schizophrenia. Current Pharmaceutical Design, 2014, 20, 5104-5114.	1.9	132
39	Serotonin Receptors in Suicide Victims with Major Depression. Neuropsychopharmacology, 1997, 16, 162-173.	5.4	130
40	Dr. Meltzer and Mr. Cola Reply. American Journal of Psychiatry, 1995, 152, 153-154.	7.2	125
41	A meta-analysis of cognitive change with haloperidol in clinical trials of atypical antipsychotics: Dose effects and comparison to practice effects. Schizophrenia Research, 2007, 89, 211-224.	2.0	125
42	5-HT2A receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Research, 2002, 947, 157-165.	2.2	123
43	Clozapine-induced weight gain predicts improvement in psychopathology. Schizophrenia Research, 2003, 59, 19-27.	2.0	123
44	The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment. Psychopharmacology, 2011, 213, 289-305.	3.1	108
45	Translating the N-methyl-d-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. International Journal of Neuropsychopharmacology, 2013, 16, 2181-2194.	2.1	103
46	Relationship between dopaminergic and serotonergic neuronal activity in the frontal cortex and the action of typical and atypical antipsychotic drugs. European Archives of Psychiatry and Clinical Neuroscience, 1999, 249, S90-S98.	3.2	100
47	Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype–targeted drugs. Journal of Clinical Investigation, 2013, 123, 4986-4991.	8.2	100
48	Aripiprazole for Treatment-Resistant Schizophrenia. Journal of Clinical Psychiatry, 2007, 68, 213-223.	2.2	100
49	A Randomized, Double-Blind, Placebo-Controlled Trial of Aripiprazole Lauroxil in Acute Exacerbation of Schizophrenia. Journal of Clinical Psychiatry, 2015, 76, 1085-1090.	2.2	99
50	Treatment of Suicidality in Schizophrenia. Annals of the New York Academy of Sciences, 2001, 932, 44-60.	3.8	96
51	Clozapine: New research on efficacy and mechanism of action. European Archives of Psychiatry and Neurological Sciences, 1989, 238, 332-339.	0.9	92
52	Association study of 12 polymorphisms spanning the dopamine D2 receptor gene and clozapine treatment response in two treatment refractory/intolerant populations. Psychopharmacology, 2005, 181, 179-187.	3.1	90
53	Standard and Higher Dose of Olanzapine in Patients With Schizophrenia or Schizoaffective Disorder. Journal of Clinical Psychopharmacology, 2008, 28, 392-400.	1.4	89
54	Serotonergic Mechanisms as Targets for Existing and Novel Antipsychotics. Handbook of Experimental Pharmacology, 2012, , 87-124.	1.8	88

#	Article	IF	CITATIONS
55	Pimavanserin, a selective serotonin (5-HT)2A-inverse agonist, enhances the efficacy and safety of risperidone, 2mg/day, but does not enhance efficacy of haloperidol, 2mg/day: Comparison with reference dose risperidone, 6mg/day. Schizophrenia Research, 2012, 141, 144-152.	2.0	87
56	Differential Effect of Subchronic Treatment with Various Neuroleptic Agents on Serotonin2Receptors in Rat Cerebral Cortex. Journal of Neurochemistry, 1986, 46, 191-197.	3.9	84
57	Mechanisms of Clozapineâ€-Induced Agranulocytosis. Drug Safety, 1992, 7, 17-25.	3.2	83
58	Effect of typical and atypical antipsychotic drugs on 5-HT2 receptor density in rat cerebral cortex. Life Sciences, 1989, 45, 1397-1406.	4.3	82
59	Nâ€desmethylclozapine: a clozapine metabolite that suppresses haemopoiesis. British Journal of Haematology, 1994, 86, 555-561.	2.5	82
60	Clozapine increases both acetylcholine and dopamine release in rat ventral hippocampus: role of 5-HT1A receptor agonism. Brain Research, 2004, 1023, 54-63.	2.2	81
61	Effect of antipsychotic drugs on extracellular serotonin levels in rat medial prefrontal cortex and nucleus accumbens. European Journal of Pharmacology, 1998, 351, 163-171.	3.5	80
62	Reduced Glutamatergic Currents and Dendritic Branching of Layer 5 Pyramidal Cells Contribute to Medial Prefrontal Cortex Deactivation in a Rat Model of Neuropathic Pain. Frontiers in Cellular Neuroscience, 2016, 10, 133.	3.7	76
63	SR46349-B, a 5-HT2A/2C Receptor Antagonist, Potentiates Haloperidol-induced Dopamine Release in Rat Medial Prefrontal Cortex and Nucleus Accumbens. Neuropsychopharmacology, 2002, 27, 430-441.	5.4	71
64	Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5â€∢scp>HT⟨/scp>)⟨sub>2A⟨/sub> and ⟨scp>DA⟨/scp> D⟨sub>2⟨ sub⟩ antagonism and 5â€∢scp>HT⟨/scp>⟨sub>1A⟨/sub⟩ partial agonism. Journal of Neurochemistry, 2014, 128, 938-949.	3.9	66
65	Duration of a Clozapine Trial in Neuroleptic-Resistant Schizophrenia. Archives of General Psychiatry, 1989, 46, 672.	12.3	65
66	Massive serum creatine kinase increases with atypical antipsychotic drugs: what is the mechanism and the message?. Psychopharmacology, 2000, 150, 349-350.	3.1	65
67	Activation of Dopamine Receptor 2 Prompts Transcriptomic and Metabolic Plasticity in Glioblastoma. Journal of Neuroscience, 2019, 39, 1982-1993.	3.6	65
68	Brain Noradrenergic Receptors in Major Depression and Schizophrenia. Neuropsychopharmacology, 1999, 21, 69-81.	5.4	64
69	Genetic predictors of antipsychotic response to lurasidone identified in a genome wide association study and by schizophrenia risk genes. Schizophrenia Research, 2018, 192, 194-204.	2.0	64
70	Fluoxetine, but not Tricyclic Antidepressants, Potentiates the 5-Hydroxytryptophan-Mediated Increase in Plasma Cortisol and Prolactin Secretion in Subjects with Major Depression or with Obsessive Compulsive Disorder. Neuropsychopharmacology, 1997, 17, 1-11.	5.4	62
71	Muscle Abnormalities in Acute Psychoses. Archives of General Psychiatry, 1970, 23, 481.	12.3	61
72	Pre-clinical Pharmacology of Atypical Antipsychotic Drugs: A Selective Review. British Journal of Psychiatry, 1996, 168, 23-31.	2.8	61

#	Article	IF	Citations
73	Effect of Adjunctive Treatment With Serotonin-1A Agonist Tandospirone on Memory Functions in Schizophrenia. Journal of Clinical Psychopharmacology, 2000, 20, 386-388.	1.4	61
74	Recent advances in the pharmacotherapy of schxzophrenia. Acta Psychiatrica Scandinavica, 1994, 90, 95-101.	4.5	59
75	5-HT6 receptor antagonist SB-399885 potentiates haloperidol and risperidone-induced dopamine efflux in the medial prefrontal cortex or hippocampus. Brain Research, 2007, 1134, 70-78.	2.2	57
76	Inhibitory effect of ritanserin on the 5-hydroxytryptophan-mediated cortisol, ACTH and prolactin secretion in humans. Psychopharmacology, 1991, 103, 258-264.	3.1	56
77	Interaction of mGlu2/3 agonism with clozapine and lurasidone to restore novel object recognition in subchronic phencyclidine-treated rats. Psychopharmacology, 2011, 217, 13-24.	3.1	56
78	ACP-103, a 5-HT2A/2C inverse agonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Psychopharmacology, 2005, 183, 144-153.	3.1	55
79	Association study of the vesicular monoamine transporter gene SLC18A2 with tardive dyskinesia. Journal of Psychiatric Research, 2013, 47, 1760-1765.	3.1	55
80	Amperozide, a Novel Antipsychotic Drug, Inhibits the Ability of d-Amphetamine to Increase Dopamine Release In Vivo in Rat Striatum and Nucleus Accumbens. Journal of Neurochemistry, 1992, 58, 2285-2291.	3.9	54
81	Dissecting the Functional Consequences of De Novo DNA Methylation Dynamics in Human Motor Neuron Differentiation and Physiology. Cell Stem Cell, 2018, 22, 559-574.e9.	11.1	53
82	Association study of dopamine D3 receptor gene and schizophrenia. American Journal of Medical Genetics Part A, 1995, 60, 558-562.	2.4	52
83	Cognitive Factors in Schizophrenia: Causes, Impact, and Treatment. CNS Spectrums, 2004, 9, 15-24.	1.2	52
84	The brainâ€derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with increased body mass index and insulin resistance measures in bipolar disorder and schizophrenia. Bipolar Disorders, 2015, 17, 528-535.	1.9	52
85	Association study between the dopamine D4 receptor gene and schizophrenia. American Journal of Medical Genetics Part A, 1995, 60, 452-455.	2.4	49
86	Effect of 3,4-Methylenedioxymethamphetamine on 3,4-Dihydroxyphenylalanine Accumulation in the Striatum and Nucleus Accumbens. Journal of Neurochemistry, 1990, 54, 1062-1067.	3.9	48
87	5-HT1A and 5-HT2A receptors minimally contribute to clozapine-induced acetylcholine release in rat medial prefrontal cortex. Brain Research, 2002, 939, 34-42.	2.2	48
88	Suicide in Schizophrenia, Clozapine, and Adoption of Evidence-Based Medicine. Journal of Clinical Psychiatry, 2005, 66, 530-533.	2.2	48
89	Clozapine Acts as an Agonist at Serotonin 2A Receptors to Counter MK-801-Induced Behaviors through a Î ² Arrestin2-Independent Activation of Akt. Neuropsychopharmacology, 2014, 39, 1902-1913.	5.4	47
90	Asenapine Increases Dopamine, Norepinephrine, and Acetylcholine Efflux in the Rat Medial Prefrontal Cortex and Hippocampus. Neuropsychopharmacology, 2008, 33, 2934-2945.	5.4	46

#	Article	IF	CITATIONS
91	The novel $\hat{l}\pm7$ nicotinic acetylcholine receptor agonist EVP-6124 enhances dopamine, acetylcholine, and glutamate efflux in rat cortex and nucleus accumbens. Psychopharmacology, 2014, 231, 4541-4551.	3.1	45
92	Plasma Clozapine Levels and the Treatment of L-DOPA-Induced Psychosis in Parkinson's Disease. Neuropsychopharmacology, 1995, 12, 39-45.	5.4	44
93	GLYX-13 (rapastinel) ameliorates subchronic phencyclidine- and ketamine-induced declarative memory deficits in mice. Behavioural Brain Research, 2016, 299, 105-110.	2.2	43
94	5-HT2C Agonists Modulate Schizophrenia-Like Behaviors in Mice. Neuropsychopharmacology, 2017, 42, 2163-2177.	5.4	42
95	Determinants of work outcome in schizophrenia and schizoaffective disorder: Role of cognitive function. Psychiatry Research, 2009, 169, 178-179.	3.3	41
96	Prevention of the Phencyclidine-Induced Impairment in Novel Object Recognition in Female Rats by Co-Administration of Lurasidone or Tandospirone, a 5-HT1A Partial Agonist. Neuropsychopharmacology, 2012, 37, 2175-2183.	5 . 4	41
97	5-HT1A and 5-HT7 receptors contribute to lurasidone-induced dopamine efflux. NeuroReport, 2012, 23, 436-440.	1.2	40
98	A 12-Month Randomized, Open-Label Study of the Metabolic Effects of Olanzapine and Risperidone in Psychotic Patients. Journal of Clinical Psychiatry, 2011, 72, 1602-1610.	2.2	40
99	Interpreting the Efficacy Findings in the CATIE Study: What Clinicians Should Know. CNS Spectrums, 2006, 11, 14-24.	1.2	39
100	D1 receptor agonists reverse the subchronic phencyclidine (PCP)-induced novel object recognition (NOR) deficit in female rats. Behavioural Brain Research, 2013, 238, 36-43.	2.2	38
101	Selective cross-tolerance to 5-HT1A and 5-HT2 receptor-mediated temperature and corticosterone responses. Pharmacology Biochemistry and Behavior, 1989, 33, 781-785.	2.9	37
102	Basic biology of clozapine: electrophysiological and neuroendocrinological studies. Psychopharmacology, 1989, 99, S13-S17.	3.1	37
103	The Effect of Streptozotocin-Induced Diabetes on Dopamine2, Serotonin1A and Serotonin2A Receptors in the Rat Brain. Neuropsychopharmacology, 1997, 16, 183-190.	5.4	37
104	Commentary on "Clinical studies on the mechanism of action of clozapine; the dopamineâ€"serotonin hypothesis of schizophrenia." Psychopharmacology (1989) 99:S18â€"S27. Psychopharmacology, 2002, 163, 1-3.	3.1	37
105	Preliminary evidence for association of genome-wide significant <i>DRD2</i> schizophrenia risk variant with clozapine response. Pharmacogenomics, 2016, 17, 103-109.	1.3	37
106	Subchronic phencyclidine treatment in adult mice increases GABAergic transmission and LTP threshold in the hippocampus. Neuropharmacology, 2016, 100, 90-97.	4.1	36
107	Novel approaches to the pharmacotherapy of schizophrenia. Drug Development Research, 1986, 9, 23-40.	2.9	34
108	The effect of chronic atypical antipsychotic drugs and haloperidol on amphetamine-induced dopamine release in vivo. Brain Research, 1992, 574, 98-104.	2.2	34

#	Article	IF	CITATIONS
109	Atypical antipsychotic drugs improve cognition in schizophrenia. Biological Psychiatry, 2003, 53, 265-267.	1.3	34
110	The Novel Antipsychotic Drug Lurasidone Enhances $\langle i \rangle N \langle i \rangle$ -Methyl-d-aspartate Receptor-Mediated Synaptic Responses. Molecular Pharmacology, 2012, 81, 113-119.	2.3	34
111	Dopamine D4 and D5 receptor gene variant effects on clozapine response in schizophrenia: Replication and exploration. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 37, 62-75.	4.8	34
112	Plasma Clozapine and Desmethylclozapine Levels in Clozapine-Induced Agranulocytosis. Neuropsychopharmacology, 1994, 11, 45-47.	5.4	33
113	Effects of divalproex and atypical antipsychotic drugs on dopamine and acetylcholine efflux in rat hippocampus and prefrontal cortex. Brain Research, 2006, 1099, 44-55.	2.2	33
114	Association of Sult4A1 SNPs with psychopathology and cognition in patients with schizophrenia or schizoaffective disorder. Schizophrenia Research, 2008, 106, 258-264.	2.0	33
115	Lurasidone Improves Psychopathology and Cognition in Treatment-Resistant Schizophrenia. Journal of Clinical Psychopharmacology, 2020, 40, 240-249.	1.4	30
116	Melperone and clozapine: neuroendocrine effects of atypical neuroleptic drugs. Acta Psychiatrica Scandinavica, 1989, 80, 24-29.	4.5	28
117	The Evolution of Treatment Resistance: Biologic Implications. Journal of Clinical Psychopharmacology, 1998, 18, 5S-11S.	1.4	28
118	Clozapine pretreatment modifies haloperidol-elicited forebrain Fos induction: a regionally-specific double dissociation. Psychopharmacology, 1999, 144, 255-263.	3.1	28
119	The metabolic consequences of long-term treatment with olanzapine, quetiapine and risperidone: are there differences?. International Journal of Neuropsychopharmacology, 2005, 8, 153-156.	2.1	28
120	Involvement of Cholinergic System in Hyperactivity in Dopamine-Deficient Mice. Neuropsychopharmacology, 2015, 40, 1141-1150.	5.4	27
121	Serotonin 1A Receptors in Memory Function. American Journal of Psychiatry, 2004, 161, 1505-1505.	7.2	26
122	A Hypothesis-Driven Association Study of 28 Nuclear-Encoded Mitochondrial Genes with Antipsychotic-Induced Weight Gain in Schizophrenia. Neuropsychopharmacology, 2014, 39, 1347-1354.	5.4	26
123	Pharmacotherapy of cognition in schizophrenia. Current Opinion in Behavioral Sciences, 2015, 4, 115-121.	3.9	26
124	Dopamine D ₄ receptor stimulation contributes to novel object recognition: Relevance to cognitive impairment in schizophrenia. Journal of Psychopharmacology, 2017, 31, 442-452.	4.0	26
125	Enantioselective Syntheses of Heteroyohimbine Natural Products: A Unified Approach through Cooperative Catalysis. Angewandte Chemie - International Edition, 2015, 54, 6900-6904.	13.8	25
126	Dopamine D3 receptor antagonism contributes to blonanserin-induced cortical dopamine and acetylcholine efflux and cognitive improvement. Pharmacology Biochemistry and Behavior, 2015, 138, 49-57.	2.9	25

#	Article	lF	CITATIONS
127	Gamma-Aminobutyric Acidergic Projections From the Dorsal Raphe to the Nucleus Accumbens Are Regulated by Neuromedin U. Biological Psychiatry, 2016, 80, 878-887.	1.3	25
128	Effects of Desmethylclozapine on Fos Protein Expression in the Forebrain: In Vivo Biological Activity of the Clozapine Metabolite. Neuropsychopharmacology, 1998, 19, 99-103.	5.4	24
129	A randomized trial comparing clozapine and typical neuroleptic drugs in non-treatment-resistant schizophrenia. Psychiatry Research, 2010, 177, 286-293.	3.3	24
130	The putative functional rs1045881 marker of neurexin-1 in schizophrenia and clozapine response. Schizophrenia Research, 2011, 132, 121-124.	2.0	24
131	The alpha-7 nicotinic receptor partial agonist/5-HT3 antagonist RG3487 enhances cortical and hippocampal dopamine and acetylcholine release. Psychopharmacology, 2014, 231, 2199-2210.	3.1	24
132	Combined serotonin (5-HT)1A agonism, 5-HT2A and dopamine D2 receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats. Behavioural Brain Research, 2015, 285, 165-175.	2.2	24
133	Serotonin (5-HT)1A receptor agonism and 5-HT7 receptor antagonism ameliorate the subchronic phencyclidine-induced deficit in executive functioning in mice. Psychopharmacology, 2016, 233, 649-660.	3.1	24
134	Association of orexin receptor polymorphisms with antipsychotic-induced weight gain. World Journal of Biological Psychiatry, 2016, 17, 221-229.	2.6	24
135	Nicotinic receptors and lurasidone-mediated reversal of phencyclidine-induced deficit in novel object recognition. Behavioural Brain Research, 2016, 301, 204-212.	2.2	24
136	Suppression of the hypo- and hyperthermic responses to 5-HT agonists following the repeated administration of monoamine oxidase inhibitors. Psychopharmacology, 1986, 90, 403-7.	3.1	23
137	The Role of Dopamine D ₃ Receptor Partial Agonism in Cariprazine-Induced Neurotransmitter Efflux in Rat Hippocampus and Nucleus Accumbens. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 517-525.	2.5	23
138	Descriptive studies of H-reflex recovery curves in psychiatric patients. Psychological Medicine, 1980, 10, 541-548.	4.5	22
139	A genetic locus in 7p12.2 associated with treatment resistant schizophrenia. Schizophrenia Research, 2014, 159, 333-339.	2.0	22
140	5-HT1A parital agonism and 5-HT7 antagonism restore episodic memory in subchronic phencyclidine-treated mice: role of brain glutamate, dopamine, acetylcholine and GABA. Psychopharmacology, 2018, 235, 2795-2808.	3.1	22
141	Illuminating the molecular basis for some antipsychotic drug-induced metabolic burden. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3019-3020.	7.1	21
142	Differential Effects of M1 and 5-Hydroxytryptamine1A Receptors on Atypical Antipsychotic Drug-Induced Dopamine Efflux in the Medial Prefrontal Cortex. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 948-955.	2.5	21
143	5-HT2A and 5-HT2C receptor stimulation are differentially involved in the cortical dopamine effluxâ€"Studied in 5-HT2A and 5-HT2C genetic mutant mice. European Journal of Pharmacology, 2011, 652, 40-45.	3.5	21
144	î"9-tetrahydrocannabinol (î"9-THC) administration after neonatal exposure to phencyclidine potentiates schizophrenia-related behavioral phenotypes in mice. Pharmacology Biochemistry and Behavior, 2017, 159, 6-11.	2.9	21

#	Article	IF	Citations
145	The allosteric dopamine D1 receptor potentiator, DETQ, ameliorates subchronic phencyclidine-induced object recognition memory deficits and enhances cortical acetylcholine efflux in male humanized D1 receptor knock-in mice. Behavioural Brain Research, 2019, 361, 139-150.	2.2	21
146	Blunted oral body temperature response to MK-212 in cocaine addicts. Drug and Alcohol Dependence, 1994, 35, 217-222.	3.2	20
147	Effects of meta-chlorophenylpiperazine on neuroendocrine and behavioral responses in male schizophrenic patients and normal volunteers. Psychiatry Research, 1996, 64, 147-159.	3.3	20
148	Investigating association of four gene regions (GABRB3, MAOB, PAH, and SLC6A4) with five symptoms in schizophrenia. Psychiatry Research, 2012, 198, 202-206.	3.3	20
149	Neurochemical arguments for the use of dopamine D 4 receptor stimulation to improve cognitive impairment associated with schizophrenia. Pharmacology Biochemistry and Behavior, 2017, 157, 16-23.	2.9	20
150	Genetic association analysis of Nâ€methylâ€ <scp>d</scp> â€aspartate receptor subunit gene <i>GRIN2B</i> and clinical response to clozapine. Human Psychopharmacology, 2016, 31, 121-134.	1.5	19
151	Replication of rs300774, a genetic biomarker near ACP1, associated with suicide attempts in patients with schizophrenia: Relation to brain cholesterol biosynthesis. Journal of Psychiatric Research, 2017, 94, 54-61.	3.1	19
152	RP5063, an atypical antipsychotic drug with a unique pharmacologic profile, improves declarative memory and psychosis in mouse models of schizophrenia. Behavioural Brain Research, 2017, 332, 180-199.	2.2	19
153	Effect of the serotonin agonist, MK-212, on body temperature in schizophrenia. Biological Psychiatry, 1992, 31, 460-470.	1.3	18
154	Effect of muscarinic receptor agonists xanomeline and sabcomeline on acetylcholine and dopamine efflux in the rat brain; comparison with effects of 4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one (AC260584) and N-desmethylclozapine. European Journal of Pharmacology, 2008, 596, 89-97.	3.5	18
155	Attention Must Be Paid: The Association of Plasma Clozapine/NDMC Ratio With Working Memory. American Journal of Psychiatry, 2015, 172, 502-504.	7.2	18
156	Depolarizing GABA $<$ sub $>$ A $<$ /sub $>$ current in the prefrontal cortex is linked with cognitive impairment in a mouse model relevant for schizophrenia. Science Advances, 2021, 7, .	10.3	18
157	Investigation of the HSPG2 Gene in Tardive Dyskinesia – New Data and Meta-Analysis. Frontiers in Pharmacology, 2018, 9, 974.	3.5	17
158	Comparative Effectiveness Research For Antipsychotic Medications: How Much Is Enough?. Health Affairs, 2009, 28, w794-w808.	5.2	16
159	Influence of neurexin 1 (NRXN1) polymorphisms in clozapine response. Human Psychopharmacology, 2010, 25, 582-585.	1.5	16
160	Identifying the genetic risk factors for treatment response to lurasidone by genome-wide association study: A meta-analysis of samples from three independent clinical trials. Schizophrenia Research, 2018, 199, 203-213.	2.0	16
161	Contrasting Typical and Atypical Antipsychotic Drugs. Focus (American Psychiatric Publishing), 2021, 19, 3-13.	0.8	16
162	Genome-wide association study on antipsychotic-induced weight gain in Europeans and African-Americans. Schizophrenia Research, 2019, 212, 204-212.	2.0	15

#	Article	IF	Citations
163	The Effect of Apomorphine, MK-212 (6-chloro-2-[1-piperazinyl]-pyrazine) and Placebo on Smooth Pursuit Gain and Corrective Saccades in Normal Subjects. Neuropsychopharmacology, 1994, 11, 49-62.	5.4	14
164	Pharmacogenetic Analysis of Functional Glutamate System Gene Variants and Clinical Response to Clozapine. Molecular Neuropsychiatry, 2016, 2, 185-197.	2.9	14
165	Effects of NBI-98782, a selective vesicular monoamine transporter 2 (VMAT2) inhibitor, on neurotransmitter efflux and phencyclidine-induced locomotor activity: Relevance to tardive dyskinesia and antipsychotic action. Pharmacology Biochemistry and Behavior, 2020, 190, 172872.	2.9	14
166	Effect of Clozapine Treatment on Serotonin-2â€"Receptor Binding in the Blood Platelets of Schizophrenic Patients. Neuropsychopharmacology, 1994, 10, 109-114.	5.4	13
167	No evidence for a role of the peroxisome proliferator-activated receptor gamma (PPARG) and adiponectin (ADIPOQ) genes in antipsychotic-induced weight gain. Psychiatry Research, 2014, 219, 255-260.	3.3	13
168	Muscarinic receptor signaling contributes to atypical antipsychotic drug reversal of the phencyclidine-induced deficit in novel object recognition in rats. Journal of Psychopharmacology, 2017, 31, 1588-1604.	4.0	13
169	Association of Serotonin2c Receptor Polymorphisms With Antipsychotic Drug Response in Schizophrenia. Frontiers in Psychiatry, 2019, 10, 58.	2.6	13
170	Genetic validation study of protein tyrosine phosphatase receptor type D (PTPRD) gene variants and risk for antipsychotic-induced weight gain. Journal of Neural Transmission, 2019, 126, 27-33.	2.8	13
171	Identification of the role of bone morphogenetic protein ($<$ scp $>$ BMP $<$ /scp $>$) and transforming growth factorâ \in Î 2 (TGFâ \in Î 2) signaling in the trajectory of serotonergic differentiation in a rapid assay in mouse embryonic stem cells $<$ i $<$ i $<$ in vitro $<$ /i> $<$ ii $<$ lower lowe	3.9	11
172	Prolonged reversal of the phencyclidine-induced impairment in novel object recognition by a serotonin (5-HT)1A-dependent mechanism. Behavioural Brain Research, 2016, 301, 132-141.	2.2	11
173	Impact of histamine receptors H1 and H3 polymorphisms on antipsychotic-induced weight gain. World Journal of Biological Psychiatry, 2018, 19, S97-S105.	2.6	11
174	TPA-023 attenuates subchronic phencyclidine-induced declarative and reversal learning deficits via GABAA receptor agonist mechanism: possible therapeutic target for cognitive deficit in schizophrenia. Neuropsychopharmacology, 2018, 43, 2468-2477.	5.4	11
175	A functional HTR1A polymorphism, rs6295, predicts short-term response to lurasidone: confirmation with meta-analysis of other antipsychotic drugs. Pharmacogenomics Journal, 2020, 20, 260-270.	2.0	11
176	Development and Validation of a Computerized Adaptive Assessment Tool for Discrimination and Measurement of Psychotic Symptoms. Schizophrenia Bulletin, 2021, 47, 644-652.	4.3	11
177	The Neurobiology of Schizophrenia. , 0, , 301-316.		11
178	Assessing cardiovascular risks versus clinical benefits of atypical antipsychotic drug treatment. Journal of Clinical Psychiatry, 2002, 63 Suppl 9, 25-9.	2.2	11
179	Association of FAS, a TNF- $\hat{l}\pm$ receptor gene, with treatment resistant schizophrenia. Schizophrenia Research, 2011, 129, 211-212.	2.0	9
180	Language-dependent performance on the letter fluency task in patients with schizophrenia. Schizophrenia Research, 2014, 152, 421-429.	2.0	9

#	Article	IF	Citations
181	Association study between the neurexin†gene and tardive dyskinesia. Human Psychopharmacology, 2017, 32, e2568.	1.5	9
182	New insights into tardive dyskinesia genetics: Implementation of whole-exome sequencing approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 94, 109659.	4.8	9
183	An autophagy-related protein Becn2 regulates cocaine reward behaviors in the dopaminergic system. Science Advances, 2021, 7, .	10.3	9
184	Genetic study of neuregulin 1 and receptor tyrosine-protein kinase erbB-4 in tardive dyskinesia. World Journal of Biological Psychiatry, 2019, 20, 91-95.	2.6	8
185	Identification of a Serotonin 2A Receptor Subtype of Schizophrenia Spectrum Disorders With Pimavanserin: The Sub-Sero Proof-of-Concept Trial Protocol. Frontiers in Pharmacology, 2020, 11, 591.	3.5	8
186	Beyond Control of Acute Exacerbation: Enhancing Affective and Cognitive Outcomes. CNS Spectrums, 2003, 8, 16-18.	1.2	8
187	Association study of Disrupted-In-Schizophrenia-1 gene variants and tardive dyskinesia. Neuroscience Letters, 2018, 686, 17-22.	2.1	7
188	A Mouse Model of Human Primitive Neuroectodermal Tumors Resulting from Microenvironmentally-Driven Malignant Transformation of Orthotopically Transplanted Radial Glial Cells. PLoS ONE, 2015, 10, e0121707.	2.5	6
189	A withinâ€subject consideration of the psychotic spectrum disorder concept in a patient in remission associated with cortical gray matter recovery. CNS Neuroscience and Therapeutics, 2018, 24, 641-651.	3.9	6
190	INTRODUCTION. Journal of Clinical Psychopharmacology, 1998, 18, 1S.	1.4	5
191	Reply: H1-histamine Receptor Affinity Predicts Short-term Weight Gain for Typical and Atypical Antipsychotic Drugs. Neuropsychopharmacology, 2003, 28, 2210-2211.	5. 4	5
192	Hippocampal GABA A antagonism reverses the novel object recognition deficit in sub-chronic phencyclidine-treated rats. Behavioural Brain Research, 2018, 342, 11-18.	2.2	5
193	The effect of high vs. low dose lurasidone on eye movement biomarkers of prefrontal abilities in treatment-resistant schizophrenia. Schizophrenia Research, 2020, 215, 314-321.	2.0	5
194	Schizophreniaâ€associated gene dysbindinâ€1 and tardive dyskinesia. Drug Development Research, 2021, 82, 678-684.	2.9	5
195	Schizophrenia risk loci from xMHC region were associated with antipsychotic response in chronic schizophrenic patients with persistent positive symptom. Translational Psychiatry, 2022, 12, 92.	4.8	5
196	Decreased serotonin2C receptor responses in male patients with schizophrenia. Psychiatry Research, 2015, 226, 308-315.	3.3	4
197	Liver enzyme <i>CYP2D6</i> gene and tardive dyskinesia. Pharmacogenomics, 2020, 21, 1065-1072.	1.3	4
198	Testing multiple novel mechanisms for treating schizophrenia in a single trial., 0,, 115-120.		2

#	Article	IF	CITATIONS
199	Schizophrenia and Suicide: Treatment Optimization. Current Treatment Options in Psychiatry, 2014, 1, 149-162.	1.9	2
200	Phencyclidine (PCP)–Induced Deficits in Novel Object Recognition. , 2016, , 723-732.		1
201	Awareness of illness moderates self-assessment of psychotic symptoms. Australian and New Zealand Journal of Psychiatry, 2021, , 000486742110574.	2.3	1
202	Role of advanced glycation end products in the longitudinal association between muscular strength and psychotic symptoms among adolescents. NPJ Schizophrenia, 2022, 8, .	3.6	1
203	Repeated administration of rapastinel produces exceptionally prolonged rescue of memory deficits in phencyclidine-treated mice. Behavioural Brain Research, 2022, 432, 113964.	2.2	1
204	Serum Creatine Phosphokinase Activity in Acute Psychosis. British Journal of Psychiatry, 1973, 122, 369-369.	2.8	0
205	Perospirone. CNS Drugs, 2001, 15, 338.	5.9	0
206	Responseâ<†. Neuropsychopharmacology, 2002, 26, 409.	5.4	0
207	Testing Multiple Novel Mechanisms for Treating Schizophrenia in a Single Trial. Progress in Neurotherapeutics and Neuropsychopharmacology, 2006, 1, 115-120.	0.0	0
208	Oakley Ray, 1931–2007. Neuropsychopharmacology, 2008, 33, 2783-2784.	5.4	0
209	F1. GENOME-WIDE ASSOCIATION STUDIES SUGGESTED ASSOCIATION BETWEEN DGKB AND ANTIPSYCHOTIC INDUCED WEIGHT GAIN IN EUROPEANS AND AFRICAN AMERICANS. Schizophrenia Bulletin, 2018, 44, S218-S218.	4.3	0
210	T7. PHARMACOGENETIC OF TARDIVE DYSKINESIA A FOLLOW-UP ON THE VALBENAZINE TARGET VMAT2/SLC18A2. Schizophrenia Bulletin, 2018, 44, S115-S115.	4.3	0
211	M172. POLYGENIC RISK SCORES ANALYSES IN ANTIPSYCHOTIC-INDUCED WEIGHT GAIN. Schizophrenia Bulletin, 2020, 46, S202-S202.	4.3	0
212	RELATIONSHIP BETWEEN POSITIVE AND NEGATIVE SYMPTOMS: RESPONSE TO ANTIPSYCHOTIC DRUGS AND STRUCTURAL BRAIN ABNORMALITIES. , 1994, , .		0
213	Unmet Needs in Patients with Schizophrenia. , 2020, , 15-25.		O