
Krishna G Bhattacharyya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9527835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 2008, 140, 114-131.	7.0	1,198
2	Adsorption of methylene blue on kaolinite. Applied Clay Science, 2002, 20, 295-300.	2.6	686
3	Kinetics of adsorption of metal ions on inorganic materials: A review. Advances in Colloid and Interface Science, 2011, 162, 39-58.	7.0	654
4	Kinetics and thermodynamics of Methylene Blue adsorption on Neem () leaf powder. Dyes and Pigments, 2005, 65, 51-59.	2.0	628
5	Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo Red solutions. Journal of Environmental Management, 2004, 71, 217-229.	3.8	368
6	Adsorption of Ni(II) on clays. Journal of Colloid and Interface Science, 2006, 295, 21-32.	5.0	303
7	Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management, 2008, 87, 46-58.	3.8	278
8	Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder. Dyes and Pigments, 2003, 57, 211-222.	2.0	273
9	Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution. Separation and Purification Technology, 2006, 50, 388-397.	3.9	252
10	Adsorption of heavy metals on kaolinite and montmorillonite: a review. Physical Chemistry Chemical Physics, 2012, 14, 6698.	1.3	236
11	Adsorption of Cr(VI) in layered double hydroxides. Applied Clay Science, 1998, 13, 21-34.	2.6	216
12	Adsorption of Pb(II) from aqueous solution by Azadirachta indica (Neem) leaf powder. Journal of Hazardous Materials, 2004, 113, 97-109.	6.5	205
13	Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. Environmental Science and Pollution Research, 2019, 26, 6245-6278.	2.7	200
14	Adsorption of Chromium(VI) from Water by Clays. Industrial & Engineering Chemistry Research, 2006, 45, 7232-7240.	1.8	194
15	Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: Kinetic and thermodynamic study. Chemical Engineering Journal, 2008, 136, 1-13.	6.6	190
16	Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite: Influence of acid activation. Journal of Colloid and Interface Science, 2007, 310, 411-424.	5.0	186
17	Interaction of metal ions with clays: I. A case study with Pb(II). Applied Clay Science, 2005, 30, 199-208.	2.6	159
18	Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials, 2006, 128, 247-257.	6.5	156

#	Article	IF	CITATIONS
19	Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: Influence of acid activation of the clays. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277, 191-200.	2.3	154
20	Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium. Applied Clay Science, 2008, 41, 1-9.	2.6	153
21	Removal of Cu(II) by natural and acid-activated clays: An insight of adsorption isotherm, kinetic and thermodynamics. Desalination, 2011, 272, 66-75.	4.0	135
22	Adsorption of Chromium (VI) on Azadirachta Indica (Neem) Leaf Powder. Adsorption, 2005, 10, 327-338.	1.4	120
23	Adsorption of metal ions by clays and inorganic solids. RSC Advances, 2014, 4, 28537-28586.	1.7	101
24	Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption, 2006, 12, 185-204.	1.4	98
25	Interactions of the dye, Rhodamine B with kaolinite and montmorillonite in water. Applied Clay Science, 2014, 99, 7-17.	2.6	93
26	Azadirachta indica (Neem) leaf powder as a biosorbent for removal of Cd(II) from aqueous medium. Journal of Hazardous Materials, 2005, 125, 102-112.	6.5	92
27	Adsorption of Fe(III), Co(II) and Ni(II) on ZrO–kaolinite and ZrO–montmorillonite surfaces in aqueous medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 71-79.	2.3	90
28	Hydrogenation of phenol over supported platinum and palladium catalysts. Applied Catalysis A: General, 1993, 96, 229-239.	2.2	89
29	Catalytic wet oxidation of 2-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol in water with Mn(II)-MCM41. Chemical Engineering Journal, 2008, 139, 575-588.	6.6	89
30	Metal speciation in Jhanji River sediments. Science of the Total Environment, 1996, 193, 1-12.	3.9	75
31	Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India. Environmental Monitoring and Assessment, 2011, 173, 221-240.	1.3	73
32	Removal of hazardous basic dyes from aqueous solution by adsorption onto kaolinite and acid-treated kaolinite: kinetics, isotherm and mechanistic study. SN Applied Sciences, 2019, 1, 1.	1.5	71
33	Oxidation of Rhodamine B in aqueous medium in ambient conditions with raw and acid-activated MnO2, NiO, ZnO as catalysts. Journal of Molecular Catalysis A, 2014, 391, 121-129.	4.8	67
34	Influence of Acid Activation of Kaolinite and Montmorillonite on Adsorptive Removal of Cd(II) from Water. Industrial & Engineering Chemistry Research, 2007, 46, 3734-3742.	1.8	65
35	HZSM-5 catalysed conversion of aqueous ethanol to hydrocarbons. Applied Catalysis A: General, 1997, 148, 357-371.	2.2	57
36	Biosorption of fluoride on Neem (Azadirachta indica) leaf powder. Journal of Environmental Chemical Engineering, 2015, 3, 662-669.	3.3	57

#	Article	IF	CITATIONS
37	Calcined tetrabutylammonium kaolinite and montmorillonite and adsorption of Fe(II), Co(II) and Ni(II) from solution. Applied Clay Science, 2009, 46, 216-221.	2.6	56
38	Al-MCM-41 catalysed alkylation of phenol with methanol. Journal of Molecular Catalysis A, 2003, 197, 255-262.	4.8	54
39	Characterization of a Novel Polymeric Bioflocculant Produced from Bacterial Utilization of n-Hexadecane and Its Application in Removal of Heavy Metals. Frontiers in Microbiology, 2017, 8, 170.	1.5	52
40	Wet oxidative method for removal of 2,4,6-trichlorophenol in water using Fe(III), Co(II), Ni(II) supported MCM41 catalysts. Journal of Hazardous Materials, 2008, 150, 728-736.	6.5	50
41	Fe(III)-, Co(II)- and Ni(II)-impregnated MCM41 for wet oxidative destruction of 2,4-dichlorophenol in water. Catalysis Today, 2009, 141, 225-233.	2.2	49
42	Cu(II)-kaolinite and Cu(II)-montmorillonite as catalysts for wet oxidative degradation of 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol. Chemical Engineering Journal, 2013, 233, 88-97.	6.6	49
43	Biosorption of Commercial Dyes on Azadirachta indica Leaf Powder: A Case Study with a Basic Dye Rhodamine B. Industrial & Engineering Chemistry Research, 2008, 47, 5433-5440.	1.8	47
44	XPS study of mica surfaces. Journal of Electron Spectroscopy and Related Phenomena, 1993, 63, 289-306.	0.8	45
45	Methylene Blue Adsorption on Natural and Modified Clays. Separation Science and Technology, 2011, 46, 1602-1614.	1.3	43
46	Montmorillonite and modified montmorillonite as adsorbents for removal of water soluble organic dyes: A review on current status of the art. Inorganic Chemistry Communication, 2022, 143, 109686.	1.8	40
47	Adsorption of Co(II) from Aqueous Medium on Natural and Acid Activated Kaolinite and Montmorillonite. Separation Science and Technology, 2007, 42, 3391-3418.	1.3	38
48	Production of a non-cytotoxic bioflocculant by a bacterium utilizing a petroleum hydrocarbon source and its application in heavy metal removal. RSC Advances, 2015, 5, 66037-66046.	1.7	38
49	Multivariate statistical evaluation of heavy metals in the surface water sources of Jia Bharali river basin, North Brahmaputra plain, India. Applied Water Science, 2017, 7, 2577-2586.	2.8	37
50	Utilization of Euryale ferox Salisbury seed shell for removal of basic fuchsin dye from water: equilibrium and kinetics investigation. RSC Advances, 2017, 7, 27248-27259.	1.7	36
51	Adsorption of carbon dioxide on mica surfaces. Langmuir, 1989, 5, 1155-1162.	1.6	33
52	Adsorptive Accumulation of Cd(II), Co(II), Cu(II), Pb(II) and Ni(II) Ions from Water onto Kaolinite: Influence of Acid Activation. Adsorption Science and Technology, 2009, 27, 47-68.	1.5	32
53	Kinetics of Aqueous Cu(II) Biosorption onto <i>Thevetia peruviana</i> Leaf Powder. ACS Omega, 2020, 5, 13489-13502.	1.6	29
54	Modification of Soil Quality Near a Pulp and Paper Mill. Water, Air, and Soil Pollution, 2003, 146, 319-333.	1.1	24

#	Article	IF	CITATIONS
55	Using Mn(II)â^'MCM41 as an Environment-Friendly Catalyst to Oxidize Phenol, 2-Chlorophenol, and 2-Nitrophenol in Aqueous Solution. Industrial & Engineering Chemistry Research, 2008, 47, 1370-1379.	1.8	24
56	Impact of urbanization on the quality of water in a natural reservoir: a case study with the Deepor Beel in Guwahati city, India. Water and Environment Journal, 2010, 24, 83-96.	1.0	24
57	Azadirachta indica leaf powder as a biosorbent for Ni(II) in aqueous medium. Journal of Hazardous Materials, 2009, 165, 271-278.	6.5	24
58	Developing a biosorbent from Aegle Marmelos leaves for removal of methylene blue from water. International Journal of Environmental Science and Technology, 2017, 14, 341-352.	1.8	24
59	Acetylation of phenol with Al-MCM-41. Catalysis Communications, 2001, 2, 105-111.	1.6	23
60	Estimation of uranium in groundwater and assessment of age-dependent radiation dose in Nalbari district of Assam, India. SN Applied Sciences, 2021, 3, 1.	1.5	22
61	1-Hexene isomerization and n-hexane cracking over HMCM-22. Applied Catalysis A: General, 2001, 213, 239-245.	2.2	20
62	Using coal fly ash as a support for Mn(II), Co(II) and Ni(II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization. Journal of Environmental Management, 2015, 150, 479-488.	3.8	20
63	Correlation of soil organic carbon and nutrients (NPK) to soil mineralogy, texture, aggregation, and land use pattern. Environmental Monitoring and Assessment, 2015, 187, 735.	1.3	20
64	Uptake of Ni(II) lons from Aqueous Solution by Kaolinite and Montmorillonite: Influence of Acid Activation of the Clays. Separation Science and Technology, 2008, 43, 3221-3250.	1.3	18
65	Kinetics, equilibrium isotherms and thermodynamics of adsorption of Congo red onto natural and acid-treated kaolinite and montmorillonite. Desalination and Water Treatment, 2015, 53, 530-542.	1.0	18
66	Mobility and bioavailability of Cd, Co, Cr, Cu, Mn and Zn in surface runoff sediments in the urban catchment area of Guwahati, India. Applied Water Science, 2018, 8, 1.	2.8	17
67	Catalytic Destruction of 4â€Chlorophenol in Water. Clean - Soil, Air, Water, 2008, 36, 488-497.	0.7	16
68	Assessment of water quality in and around Jia-Bharali river basin, North Brahmaputra Plain, India, using multivariate statistical technique. Applied Water Science, 2018, 8, 1.	2.8	16
69	Investigation of groundwater and soil quality near to a municipal waste disposal site in Silchar, Assam, India. International Journal of Energy and Water Resources, 2022, 6, 37-47.	1.3	13
70	Adsorption of ammonia on mica surfaces. Langmuir, 1992, 8, 2284-2289.	1.6	12
71	Oxidation of 4â€nitrophenol in water over Fe(III), Co(II), and Ni(II) impregnated MCM41 catalysts. Journal of Chemical Technology and Biotechnology, 2008, 83, 1353-1363.	1.6	10
72	Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties. Environmental Monitoring and Assessment, 2015, 187, 98.	1.3	10

#	Article	IF	CITATIONS
73	Adsorption of Monoazo Dyes (Crocein Orange G and Procion Red MX5B) from Water Using Raw and Acid-Treated Montmorillonite K10: Insight into Kinetics, Isotherm, and Thermodynamic Parameters. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	10
74	Use of Cu(II)-incorporated zeolite Y for decolourization of dyes in water: a case study with aqueous methylene blue and Congo red. SN Applied Sciences, 2019, 1, 1.	1.5	9
75	Novel synthesis of active metal oxide surface from a self-organising system of inorganic solids. Materials Letters, 2000, 46, 105-108.	1.3	8
76	Empirical Modeling of Electron Transport in Fe/Ti Layered Double Hydroxide Using Exponential, Gaussian and Mixed Gauss–Exponential Distribution. ACS Omega, 2019, 4, 10599-10609.	1.6	8
77	Adsorptive Interaction of Certain Beta-lactam Antibiotics in Aqueous Solution. Interpretation by Frontier Orbital Theory Journal of Chemical Engineering of Japan, 2000, 33, 303-307.	0.3	8
78	Use of Raw and Acid-Treated MnO ₂ as Catalysts for Oxidation of Dyes in Water: A Case Study with Aqueous Methylene Blue. Chemical Engineering Communications, 2015, 202, 1657-1667.	1.5	6
79	A comparison of neutralization efficiency of chemicals with respect to acidic Kopili River water. Applied Water Science, 2017, 7, 2209-2214.	2.8	6
80	Oxidative degradation of Congo red using zeolite Y as a support for Co(II), Ni(II) and Cu(II) ions. SN Applied Sciences, 2019, 1, 1.	1.5	6
81	Using Aqueous Kaolinite Suspension as a Medium for Removing Phosphate from Water. Adsorption Science and Technology, 2012, 30, 533-547.	1.5	5
82	Toxic Trace Metals in the Surface Water Sources of Jia–Bharali river basin, North Brahmaputra Plain, India—A Hydrochemical Elucidation. Water Resources, 2019, 46, 117-127.	0.3	5
83	Sequential treatment of paper mill effluent with modified Fenton oxidation and bioflocculation. Environment, Development and Sustainability, 2020, 22, 5425-5442.	2.7	5
84	Oxidative Degradation of Orange II Dye in Water with Raw and Acidâ€Treated ZnO, and MnO ₂ . Clean - Soil, Air, Water, 2013, 41, 984-991.	0.7	4
85	Dissolved trace metals in the shallow aquifers of the Jia Bharali River Basin, North Brahmaputra Plain. Journal of the Geological Society of India, 2013, 82, 162-168.	0.5	4
86	<i>Plumeria alba (white frangipani)</i> leaf powder as a biomass-based adsorbent for removal of methylene blue in water. Separation Science and Technology, 2022, 57, 2718-2734.	1.3	4
87	Interactions of Pb(II), Cd(II) and Cr(VI) with Neem (Azadirachta indica) leaf powder: kinetics and thermodynamics. International Journal of Environment and Pollution, 2008, 34, 374.	0.2	3
88	Adsorption of Cu(II) Ions onto a Cellulosic Biosorbent, <i>Azadirachta Indica</i> Leaf Powder: Application in Water Treatment. Adsorption Science and Technology, 2010, 28, 869-883.	1.5	3
89	Ecotoxicological risk assessment of trace metals in humid subtropical soil. Ecotoxicology, 2015, 24, 1858-1868.	1.1	3
90	Oil exploration activities: assessment of hazardous impacts on â€~Golden silk' cultivation. Environmental Monitoring and Assessment, 2017, 189, 62.	1.3	3

#	Article	IF	CITATIONS
91	Removal of fluoride from spiked water in the batch or static mode and also in the column or dynamic mode. Desalination and Water Treatment, 2016, 57, 19010-19024.	1.0	2
92	Sorption Dynamics and Process Development for Removal of Copper from Aqueous Solution Using a Biosorbent Based on Mango Tree Leaves. , 2011, , .		1
93	Liquid Crystalline Behaviors of Polycholesterylmethacrylate and Poly(Cholesterylmethacrylate) Tj ETQq1 1 0.7843 52, 236-242.	14 rgBT /C 1.9	Overlock 10 1
94	Dissolved arsenic in the shallow alluvial aquifers in North Brahmaputra Plain, India: a case study in and around lower Jia Bharali River basin. Applied Water Science, 2017, 7, 2967-2974.	2.8	1
95	Hydrochemical and Multivariate Statistical Evaluation of Heavy Metals in Shallow Alluvial Aquifers of North Brahmaputra Plain, India. Water Resources, 2018, 45, 966-974.	0.3	1
96	Biosorption of Cd(II), Pb(II), and Ni(II) onMagnifera indicaLeaf Powder: An Equilibrium Study. , 2011, , .		0
97	Biosorption of Acid Blue 25 onAzadirachta indica(NEEM) Leaf Powder. , 2011, , .		0
98	Effects of a Giant Pulp and Paper Mill on the Pollutant Accumulating Capacity of the Soil with Special Reference to its Carbon Sequestering Potential. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	0
99	Shallow alluvial aquifers for drinking and agricultural purposes: a case study from Jia Bharali River Basin, North Brahmaputra Plain, India. Sustainable Water Resources Management, 2019, 5, 989-1007.	1.0	0
100	Wet Air Oxidation of Phenol on Oxides of Fe(III), Mn(IV), Ti(IV) and Goethite. Current Catalysis, 2022, 11, 71-81.	0.5	0