Joseph P Hooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9526588/publications.pdf

Version: 2024-02-01

		567281	552781
35	712	15	26
papers	citations	h-index	g-index
35	35	35	991
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tunable Visible and Near Infrared Photoswitches. Journal of the American Chemical Society, 2016, 138, 13960-13966.	13.7	210
2	Elucidation of the Fe(III) Gallate Structure in Historical Iron Gall Ink. Analytical Chemistry, 2016, 88, 5152-5158.	6.5	70
3	High strainâ€rate response of spiropyran mechanophores in PMMA. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1347-1356.	2.1	36
4	Well-balanced energetic cocrystals of H5IO6/HIO3 achieved by a small acid-base gap. Chemical Engineering Journal, 2021, 405, 126623.	12.7	31
5	lodine-Rich Imidazolium Iodate and Periodate Salts: En Route to Single-Based Biocidal Agents. Inorganic Chemistry, 2016, 55, 12844-12850.	4.0	27
6	Impact fragmentation of aluminum reactive materials. Journal of Applied Physics, 2012, 112, .	2.5	25
7	Energy and Biocides Storage Compounds: Synthesis and Characterization of Energetic Bridged Bis(triiodoazoles). Inorganic Chemistry, 2017, 56, 13547-13552.	4.0	23
8	Control of Biohazards: A High Performance Energetic Polycyclized Iodine-Containing Biocide. Inorganic Chemistry, 2018, 57, 8673-8680.	4.0	23
9	New Generation Agent Defeat Weapons: Energetic N , N ′â€Ethyleneâ€Bridged Polyiodoazoles. Chemistry - A European Journal, 2017, 23, 16753-16757.	3.3	22
10	Superior High-Energy-Density Biocidal Agent Achieved with a 3D Metal–Organic Framework. ACS Applied Materials & Company: Interfaces, 2020, 12, 40541-40547.	8.0	21
11	Mono- and diiodo-1,2,3-triazoles and their mono nitro derivatives. Dalton Transactions, 2016, 45, 9684-9688.	3.3	20
12	Structure, Thermodynamics, and Energy Content of Aluminum–Cyclopentadienyl Clusters. Journal of Physical Chemistry A, 2011, 115, 14100-14109.	2.5	18
13	1,3,5-Triiodo-2,4,6-trinitrobenzene (TITNB) from benzene: Balancing performance and high thermal stability of functional energetic materials. Chemical Engineering Journal, 2019, 378, 122119.	12.7	18
14	Low temperature synthesis of carbon nanotube-reinforced aluminum metal composite powders using cryogenic milling. Journal of Materials Research, 2014, 29, 2644-2656.	2.6	17
15	Functional energetic biocides by coupling of energetic and biocidal polyiodo building blocks. Chemical Engineering Journal, 2019, 368, 244-251.	12.7	16
16	Predicting Temperature-Dependent Solid Vapor Pressures of Explosives and Related Compounds Using a Quantum Mechanical Continuum Solvation Model. Journal of Physical Chemistry A, 2013, 117, 2035-2043.	2.5	15
17	Synthesis, Structure, and Properties of Al(^R bpy) ₃ Complexes (R = <i>t</i> -Bu,) Tj ETQq	1 1.8.7843	314 rgBT / <mark>○</mark> ∨
18	Electronic Structure of Manganese Complexes of the Redoxâ€Nonâ€innocent Tetrazene Ligand and Evidence for the Metalâ€Azide/Imido Cycloaddition Intermediate. Chemistry - A European Journal, 2016, 22, 10548-10557.	3.3	14

#	Article	IF	CITATIONS
19	<i>Ab initio</i> metadynamics simulations of oxygen/ligand interactions in organoaluminum clusters. Journal of Chemical Physics, 2014, 141, 144304.	3.0	11
20	Activation of C–H, N–H, and O–H Bonds via Proton-Coupled Electron Transfer to a Mn(III) Complex of Redox-Noninnocent Octaazacyclotetradecadiene, a Catenated-Nitrogen Macrocyclic Ligand. Journal of the American Chemical Society, 2019, 141, 5699-5709.	13.7	11
21	Oxidation of ligand-protected aluminum clusters: An ab initio molecular dynamics study. Journal of Chemical Physics, 2014, 140, 104313.	3.0	10
22	The Role of Ligand Steric Bulk in New Monovalent Aluminum Compounds. Journal of Physical Chemistry A, 2017, 121, 4678-4687.	2.5	10
23	Impact fragmentation of a brittle metal compact. Journal of Applied Physics, 2018, 123, .	2.5	10
24	Reactive fragment materials made from an aluminum–silicon eutectic powder. Journal of Applied Physics, 2020, 128, .	2.5	9
25	Predicting Solubility of Military, Homemade, and Green Explosives in Pure and Saline Water using COSMO-RS. Propellants, Explosives, Pyrotechnics, 2014, 39, 79-89.	1.6	7
26	The effect of annealing on the impact fragmentation of a pure aluminum reactive material. Journal of Applied Physics, $2019,125,.$	2.5	7
27	High-velocity Impact Fragmentation of Brittle, Granular Aluminum Spheres. Procedia Engineering, 2013, 58, 663-671.	1.2	4
28	Mechanistic Studies of [AlCp*]4Combustion. Inorganic Chemistry, 2018, 57, 8181-8188.	4.0	4
29	Growth of metalloid aluminum clusters on graphene vacancies. Journal of Chemical Physics, 2016, 144, 024703.	3.0	3
30	Energy Release and Fragmentation of Brittle Aluminum Reactive Material Cases. Propellants, Explosives, Pyrotechnics, 2021, 46, 1324-1333.	1.6	3
31	Insight into the role of interfaces on mechanical properties of low-porosity Al/Ni compacts: Comparison of experiment and simulation. Journal of Applied Physics, 2021, 130, .	2.5	2
32	Modeling the stability and growth of metalloid clusters for energetic materials. AIP Conference Proceedings, 2017, , .	0.4	1
33	The role of reducing agents in the nucleation and growth of Al metalloid clusters: Ab initio molecular dynamics study. AIP Conference Proceedings, 2018, , .	0.4	0
34	Topology and Equilibrium Analysis of the Monovalent Aluminum Compound Al ₄ Cp* ^{Ph} ₄ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 454-464.	1.2	0
35	Templated Growth of a Spin-Frustrated Cluster Fragment of MnBr2 in a Metal–Organic Framework. Inorganic Chemistry, 2021, 60, 16103-16110.	4.0	0