## Cristina Rada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9526275/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Immunoglobulin Isotype Switching Is Inhibited and Somatic Hypermutation Perturbed in UNG-Deficient<br>Mice. Current Biology, 2002, 12, 1748-1755.                                                                                                | 3.9  | 648       |
| 2  | Mismatch Recognition and Uracil Excision Provide Complementary Paths to Both Ig Switching and the A/T-Focused Phase of Somatic Mutation. Molecular Cell, 2004, 16, 163-171.                                                                      | 9.7  | 428       |
| 3  | Hot Spot Focusing of Somatic Hypermutation in MSH2-Deficient Mice Suggests Two Stages of<br>Mutational Targeting. Immunity, 1998, 9, 135-141.                                                                                                    | 14.3 | 354       |
| 4  | DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. ELife, 2013, 2, e00534.                                                                                                   | 6.0  | 322       |
| 5  | Comparison of the Differential Context-dependence of DNA Deamination by APOBEC Enzymes:<br>Correlation with Mutation Spectra in Vivo. Journal of Molecular Biology, 2004, 337, 585-596.                                                          | 4.2  | 306       |
| 6  | The topography of mutational processes in breast cancer genomes. Nature Communications, 2016, 7, 11383.                                                                                                                                          | 12.8 | 235       |
| 7  | The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2â^'/â^' ungâ^'/â^' mice. Journal of Experimental Medicine, 2006, 203, 2085-2094.                                                      | 8.5  | 162       |
| 8  | Somatic hypermutation at A·T pairs: polymerase error versus dUTP incorporation. Nature Reviews<br>Immunology, 2005, 5, 171-178.                                                                                                                  | 22.7 | 132       |
| 9  | Interaction between Antibody-Diversification Enzyme AID and Spliceosome-Associated Factor CTNNBL1.<br>Molecular Cell, 2008, 31, 474-484.                                                                                                         | 9.7  | 127       |
| 10 | AID-GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear<br>localization. Proceedings of the National Academy of Sciences of the United States of America, 2002,<br>99, 7003-7008.                               | 7.1  | 119       |
| 11 | Monitoring and interpreting the intrinsic features of somatic hypermutation. Immunological Reviews, 1998, 162, 107-116.                                                                                                                          | 6.0  | 117       |
| 12 | Active demethylation in mouse zygotes involves cytosine deamination and base excision repair.<br>Epigenetics and Chromatin, 2013, 6, 39.                                                                                                         | 3.9  | 98        |
| 13 | The 5′ boundary of somatic hypermutation in a Vχ gene is in the leader intron. European Journal of<br>Immunology, 1994, 24, 1453-1457.                                                                                                           | 2.9  | 91        |
| 14 | SMUG1 is able to excise uracil from immunoglobulin genes: insight into mutation versus repair. EMBO<br>Journal, 2006, 25, 585-595.                                                                                                               | 7.8  | 90        |
| 15 | Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID. Journal of Experimental Medicine, 2010, 207, 141-153.                                                                                  | 8.5  | 90        |
| 16 | Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluracil- and UNG-backup<br>uracil-excision activities and increases cancer predisposition of Ungâ^'/â^'Msh2â^'/â^' mice. Nucleic Acids<br>Research, 2012, 40, 6016-6025. | 14.5 | 89        |
| 17 | The stability of AID and its function in class-switching are critically sensitive to the identity of its nuclear-export sequence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6736-6741.         | 7.1  | 77        |
| 18 | AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance<br>limiting DNA deaminase activity. Nature Structural and Molecular Biology, 2009, 16, 769-776.                                                      | 8.2  | 72        |

Cristina Rada

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Somatic hypermutation: activation-induced deaminase for C/G followed by polymerase η for A/T. Journal of Experimental Medicine, 2007, 204, 7-10.                                                                                                               | 8.5  | 63        |
| 20 | Active RNAP pre-initiation sites are highly mutated by cytidine deaminases in yeast, with AID targeting small RNA genes. ELife, 2014, 3, e03553.                                                                                                               | 6.0  | 51        |
| 21 | Cytoplasmic activation-induced cytidine deaminase (AID) exists in stoichiometric complex with translation elongation factor $1\hat{l}_{\pm}$ (eEF1A). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18366-18371. | 7.1  | 49        |
| 22 | Intrinsic transcriptional heterogeneity in B cells controls early class switching to IgE. Journal of Experimental Medicine, 2017, 214, 183-196.                                                                                                                | 8.5  | 49        |
| 23 | The 5′ hypermutation boundary ofx chains is independent of local and neighbouring sequences and related to the distance from the initiation of transcription. European Journal of Immunology, 1997, 27, 3115-3120.                                             | 2.9  | 47        |
| 24 | Uracil Accumulation and Mutagenesis Dominated by Cytosine Deamination in CpG Dinucleotides in<br>Mice Lacking UNG and SMUG1. Scientific Reports, 2017, 7, 7199.                                                                                                | 3.3  | 43        |
| 25 | Affinity maturation leads to differential expression of multiple copies of a κ light-chain transgene.<br>Nature, 1993, 363, 271-273.                                                                                                                           | 27.8 | 41        |
| 26 | CTNNBL1 Is a Novel Nuclear Localization Sequence-binding Protein That Recognizes RNA-splicing Factors CDC5L and Prp31. Journal of Biological Chemistry, 2011, 286, 17091-17102.                                                                                | 3.4  | 41        |
| 27 | Uracil excision by endogenous SMUG 1 glycosylase promotes efficient I g class switching and impacts<br>on A : T substitutions during somatic mutation. European Journal of Immunology, 2014, 44, 1925-1935.                                                    | 2.9  | 40        |
| 28 | Apobec2 deficiency causes mitochondrial defects and mitophagy in skeletal muscle. FASEB Journal, 2018, 32, 1428-1439.                                                                                                                                          | 0.5  | 20        |
| 29 | CTNNBL1 facilitates the association of CWC15 with CDC5L and is required to maintain the abundance of the Prp19 spliceosomal complex. Nucleic Acids Research, 2015, 43, 7058-7069.                                                                              | 14.5 | 19        |
| 30 | The cytoplasmic AID complex. Seminars in Immunology, 2012, 24, 273-280.                                                                                                                                                                                        | 5.6  | 18        |
| 31 | Epigenetics: Monoallelic Expression in the Immune System. Current Biology, 2002, 12, R108-R110.                                                                                                                                                                | 3.9  | 16        |
| 32 | Deficiency in spliceosome-associated factor CTNNBL1 does not affect ongoing cell cycling but delays exit from quiescence and results in embryonic lethality in mice. Cell Cycle, 2013, 12, 732-742.                                                            | 2.6  | 13        |
| 33 | The maturation of the antibody response. , 1995, , 57-81.                                                                                                                                                                                                      |      | 10        |
| 34 | Structural and mutational analysis reveals that CTNNBL1 binds NLSs in a manner distinct from that of<br>its closest armadilloâ€relative, karyopherin α. FEBS Letters, 2014, 588, 21-27.                                                                        | 2.8  | 5         |
| 35 | Aicardi–GoutiÔres Syndrome associated mutations of RNase H2B impair its interaction with ZMYM3<br>and the CoREST histone-modifying complex. PLoS ONE, 2019, 14, e0213553.                                                                                      | 2.5  | 5         |
| 36 | AID and RPA: PKA makes the connection local. Nature Immunology, 2009, 10, 367-369.                                                                                                                                                                             | 14.5 | 4         |

CRISTINA RADA

| #  | Article                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Mutagenesis by AID: Being in the Right Place at the Right Time. PLoS Genetics, 2015, 11, e1005489.                            | 3.5  | 2         |
| 38 | Harnessing mutation: The best of two worlds. Science, 2016, 353, 1206-1207.                                                   | 12.6 | 1         |
| 39 | The mechanism of somatic hypermutation at A·T pairs remains an open question. Nature Reviews<br>Immunology, 2005, 5, 180-180. | 22.7 | 1         |